Evaluation of Von Hippel-Lindau Syndrome Through Novel Small Molecular Tracer 68Ga-NY104 PET/CT Imaging
-
摘要:
VHL(von Hippel-Lindau)综合征是一种罕见的常染色体显性遗传病。其临床表现复杂且多样,主要表现为视网膜、中枢神经系统、肾脏、胰腺等部位的多发肿瘤,患者常需进行全身多脏器评估。碳酸酐酶Ⅸ在VHL相关病变中普遍表达,68Ga-NY104作为一种新型小分子示踪剂,可对碳酸酐酶Ⅸ阳性病灶进行全身成像。本文报道一例32岁女性VHL综合征患者,先后行18F-FDG PET/CT和68Ga-NY104 PET/CT评估病灶,结果发现后者在更多种类的病灶(包括肾脏、胰腺、肝转移病灶及小脑病灶)中存在摄取。本文就该患者相关病灶的评估过程展开讨论,以期为探索VHL综合征患者的“一站式”评估手段提供借鉴。
-
关键词:
- von Hippel-Lindau综合征 /
- 68Ga-NY104 /
- 肾透明细胞癌 /
- PET/CT /
- 碳酸酐酶Ⅸ
Abstract:VHL (von Hipple-Lindau) syndrome is a rare autosomal dominant genetic disease with complex and diverse clinical manifestations, which primarily presents as multiple tumors in the retina, central nervous system, kidneys, pancreas, and other areas. Patients often require comprehensive multi-organ assessment. Carbonic anhydrase Ⅸ (CAⅨ) is ubiquitously expressed in VHL-related lesions, and 68Ga-NY104, a novel small-molecule tracer, can perform whole-body imaging of CAⅨ-positive lesions. This case report introduces a 32-year-old female patient with VHL syndrome who underwent sequential 18F-FDG PET/CT and 68Ga-NY104 PET/CT for lesion assessment. Notably, 68Ga-NY104 PET/CT demonstrated uptake in a broader range of lesions (including renal, pancreatic, hepatic metastatic lesions and cerebellar lesions). This article discusses the process of evaluating the relevant lesions in this patient, with the aim of exploring a "one-stop" evaluation tool for patients with VHL syndrome.
-
1. 病例资料
患者女性,32岁,2023年11月因“腹胀”就诊于北京协和医院肿瘤内科,CT检查示胰腺多发囊性病变合并胰头实性肿物,肝内多发富血供占位,双肾富血供占位性病变。既往手术史:于2009年、2018年行血管母细胞瘤手术,颅内病变基因检测结果为VHL(von Hippel-Lindau)杂合突变pQ96*。家族中患者父亲确诊血管母细胞瘤,双胞胎妹妹可疑VHL综合征。结合影像学结果,考虑患者符合VHL综合征表现,累及胰腺、肾脏、脑,并出现肝脏多发转移。
为进一步评估全身各系统受累情况,患者于2023年11月11日行18F-FDG PET/CT检查,提示胰头部、肝脏、全身多发糖代谢增高骨病灶,双肾肿物,与肾实质代谢活性相近(图 1)。该患者进一步参加了北京协和医院NYCOV临床研究(伦理批号:I-23PJ753,ClinicalTrials.gov Identifier:NCT05810246),使用68Ga-NY104 PET/CT评估VHL相关病灶。68Ga-NY104是一种新型PET示踪剂,靶向VHL-HIFα-CAⅨ轴中最下游碳酸酐酶Ⅸ (carbonic anhydrase Ⅸ, CAⅨ)靶点,理论上可以评估所有VHL突变所致的的CAⅨ高表达病灶。该患者于2023年11月14日行68Ga-NY104 PET/CT检查,显示胰头肿物、肝脏多发病灶、全身多发骨病灶、双肾占位摄取均异常增高(图 2),提示病灶异常高表达CAⅨ;小脑可见多发CAⅨ表达病灶。后行肝脏占位穿刺,病理结果示小圆细胞巢团,考虑神经内分泌瘤(NET,G3);免疫组织化学染色:O6-甲基鸟嘌呤-DNA甲基转移酶(O6-methylguanine-DNA-methyltransferase,MGMT)(-),嗜铬粒蛋白A(chromogranin A,CgA)(+),Ki-67(index约25%),突触素(synapsin,Syn)(+), CD56(+),P53(-),ATRX(+),生长抑素受体2(somatostatin receptor 2,SSTR2)(+),胰岛素瘤相关蛋白1(insulinoma associated protein 1,INS M1)(+),AE1/AE3(+)。
图 1 患者18F-FDG PET/CT检查(2023.11.11)A.最大密度投影图;B.肝脏增大见多发大小不等放射性摄取增高结节及团块,部分相互融合,最大截面约15.0 cm× 7.3 cm,SUVmax=18.9,TBR=11.8(中图箭头);胰腺多发囊性密度灶,体尾部为著,最大长径约4.0 cm;C.右侧第7后肋、T11、左侧股骨头及股骨颈见放射性摄取增高灶,部分伴骨质破坏,SUVmax=17.0,TBR=10.6(箭头);D.双肾见多个实性结节,最大位于左肾上极,大小约2.0 cm(左图箭头),放射性摄取与周围肾脏一致,SUVmax=2.3,TBR=1.4;SUV(standardized uptake value):标准化摄取值;TBR(tumor to background ratio):肿瘤背景比值(以血池作为背景摄取)Figure 1. This patient's 18F-FDG PET/CT (2023.11.11)A.maximal intensity projection image; B.the liver is enlarged with multiple nodules and masses of varying sizes showing increased radiotracer uptake, some of which are fused together, the largest cross-section being approximately 15.0 cm×7.3 cm, SUVmax=18.9, TBR=11.8 (middle arrow); multiple cystic density lesions in the pancreas, predominantly in the body and tail, with the largest being approximately 4.0 cm in length; C.increased radiotracer uptake is seen in the right 7th posterior rib, T11 vertebra, left femoral head, and femoral neck, some with bone destruction, SUVmax=17.0, TBR=10.6(arrow); D. multiple solid nodules are seen in both kidneys, the largest located at the upper pole of the left kidney, measuring approximately 2.0 cm (left arrow), with radiotracer uptake similar to the surrounding renal tissue, SUVmax=2.3, TBR=1.4; SUV: standardized uptake value; TBR: tumor to background ratio (with the blood pool as the background uptake)图 2 患者68Ga-NY104 PET/CT检查(2023.11.14)A.最大密度投影图;B.胰头可见一软组织密度肿物,放射性摄取异常增高,SUVmax=22.9,TBR=28.6(左图);肝内可见多发放射性摄取增高的转移灶,最大者位于右叶,融合成团片状,SUVmax=12.9,TBR=16.1 (右图);C.全身骨骼多发放射性摄取增高灶,SUVmax=14.2,TBR=17.7;D.左肾上极(左侧箭头)及右肾中部(右侧箭头)分别可见一软组织密度肿物,较大者约2.5 cm,放射性摄取增高,SUVmax=17.2,TBR=21.5(68Ga-NY104在正常肾皮质中存在生理性摄取);E.左小脑上脚(左侧箭头)、左小脑扁桃体(右侧箭头)可见放射性摄取稍增高灶,SUVmax=5.5,TBR=6.8;SUV、TBR: 同图 1Figure 2. This patient's 68Ga-NY104 PET/CT (2023.11.14)A.maximal intensity projection image; B.a soft tissue density mass is visible in the pancreatic head with abnormally increased radiotracer uptake, SUVmax=22.9, TBR=28.6(left); Multiple metastatic lesions with increased radiotracer uptake are visible in the liver, the largest located in the right lobe, forming a confluent mass, SUVmax=12.9, TBR=16.1(right); C.multiple sites of increased radiotracer uptake in the whole skeletal system, SUVmax=14.2, TBR=17.7; D.soft tissue density masses are visible in the upper pole of the left kidney (left arrow) and the middle part of the right kidney (right arrow), the larger one approximately 2.5 cm, with increased radiotracer uptake, SUVmax=17.2, TBR=21.5(68Ga-NY104 shows physiological uptake in the normal renal cortex); E.wlightly increased radiotracer uptake is visible in the left superior cerebellar peduncle (left arrow) and the left cerebellar tonsil (right arrow), SUVmax=5.5, TBR=6.8; SUV, TBR: same as Fig. 1本例患者评估完成后, 开始替莫唑胺+卡培他滨治疗。2024年1月腹盆腔增强CT显示肝内多发转移灶部分较前缩小,中心低强化区缩小,部分病灶较前显示不清,影像学提示部分缓解,胰腺头部占位、左肾上极及右肾中部病灶、胰腺多囊性改变、大致同前。
2. 讨论
VHL综合征是一种罕见的常染色体显性遗传病,由VHL基因的胚系突变引起,发病率为1/(91 000~ 36 000)[1]。VHL基因是一种抑癌基因,位于染色体3q25-26,编码含有213个氨基酸的VHL蛋白。VHL基因突变导致VHL蛋白合成出现障碍,而VHL蛋白是一种E3泛素连接酶,介导低氧诱导因子-1(hypoxia inducible factor-1,HIF-1)的泛素化和靶蛋白降解,从而导致HIF介导的转录途径激活,包括血管内皮生长因子(vascular endothelial growth factor, VEGF)、细胞周期蛋白D1、葡萄糖转运体1和红细胞生成素等。VHL基因的胚系突变可导致多器官系统囊肿或良恶性肿瘤[如血管母细胞瘤、肾透明细胞癌(clear cell renal cell carcinoma,ccRCC)、嗜铬细胞瘤、副神经节瘤和胰腺神经内分泌肿瘤]的发生[2]。VHL综合征的主要临床表现为:血管母细胞瘤(中枢神经系统或视网膜)、肾癌、嗜铬细胞瘤、胰腺多发囊肿、神经内分泌瘤以及内淋巴囊肿瘤。当患者符合下述条件之一时可诊断为VHL综合征:(1)有明确家族史,存在以上7种肿瘤之一;(2)无家族史,出现至少2个血管母细胞瘤或1个血管母细胞瘤及上述7种肿瘤之一[3]。
中枢神经系统血管母细胞瘤是VHL综合征患者中最常见的肿瘤,也是主要致死原因,其平均发病年龄约31岁,较散发病例早约20年,病变常发生于小脑、脊髓和脑干[4]。其临床表现受肿瘤位置及其对周围神经组织的压迫程度影响,肿瘤周围囊肿较实体肿瘤更易引发颅内压增高等症状;血管母细胞瘤出血虽罕见,但可能导致严重神经功能障碍甚至死亡[3]。肾细胞癌(renal cell carcinoma, RCC)是VHL综合征患者死亡的第二大原因,VHL相关RCC呈早发和多发特点,平均发病年龄约40岁,常累及双侧肾脏,病理学特征通常表现为ccRCC,但ccRCC的进展速度相对缓慢,肿瘤直径≤3 cm时转移的概率极低[5]。VHL相关肾囊肿与普通肾囊肿性质不同,前者的囊壁和囊液中可能含有癌细胞,需进行严密随访和监测,以便及时发现并处理可能的病变[6]。胰腺神经内分泌肿瘤(pancreatic neuroendocrine neoplasm,pNEN)是VHL综合征患者胰腺病变的主要类型之一,在行影像学检查时,超过60%的VHL患者可观察到胰腺病变,其中囊性病变是最常见的类型,其发病率约为47%。值得注意的是,近15%的VHL综合征患者还伴有pNEN[7]。pNEN为富血供肿瘤,大多数生长缓慢,但具有潜在的转移风险,应根据肿瘤大小、生长快慢和基因突变类型决定处理方式。由于pNEN早期多起病隐匿,其诊疗具有极高的挑战性,患者最终确诊时多已发生转移。早发现、早治疗是延长患者生命、改善患者预后的最佳途径。
早期影像学检查对于VHL病的评估及治疗决策有着关键作用,可提示VHL综合征患者累及的系统和器官情况,评估疾病发展变化,进而辅助临床早期治疗。目前VHL诊断及随访常用的影像学检查包括MRI和CT[8-9]。关于VHL的监测,国外指南建议[10]:(1)对于无症状或病情稳定的血管母细胞瘤患者,每2年或更早进行1次MRI检查;对于进行性血管母细胞瘤或眼周囊肿扩大的患者,或担心疾病进展的患者,需进行更频繁的MRI评估。(2) 对于RCC患者,首选腹部MRI进行监测。如未发现肿瘤,每2年进行1次MRI检查;如发现肾脏肿物(直径<3 cm),应每3~6个月进行1次MRI检查,以确定肿瘤稳定性,若连续3次无变化则恢复至每2年1次;如发现肾脏肿物直径>3 cm,则应转诊行进一步评估。(3)对于pNEN患者,如未发现肿瘤,每2年进行1次MRI检查;如发现pNEN病灶<15 mm,或在2次连续扫描中稳定,则考虑每2年进行1次胰腺影像学检查;如发现pNEN病灶>15 mm,或现有的pNEN病灶范围扩大,则应转诊行VHL相关pNEN治疗或进一步评估。此外,对于腹部病灶的评估所采用的影像学方法优先级为:增强MRI>平扫MRI>增强CT>平扫CT[10]。
VHL综合征患者往往存在多器官、多种类型病灶同时存在的情况,单一检查方法或单一示踪剂的PET/CT检查无法一次性满足临床所有病灶的评估需求。此外,目前临床常用的头部增强MRI、胸腹盆增强CT存在多次扫描时间较长,以及多次CT辐射剂量暴露较高的问题。因此,改进显像手段,寻找潜在的“一站式”成像方法,辅助临床评估VHL相关病灶成为值得研究的问题。CAⅨ是碳酸酐酶家族中的一种亚型,在调节细胞外pH中发挥至关重要的作用,亦与HIF的上调直接相关[11]。CAⅨ在正常人体组织中的表达有限,使其成为分子成像和精准药物递送的理想靶点。病理研究表明,CAⅨ在VHL相关病变中均普遍表达,包括血管母细胞瘤、内淋巴囊瘤、附睾囊腺瘤、ccRCC、pNEN、嗜铬细胞瘤和囊肿,因此CAⅨ是VHL全身病灶评估的理想靶点[12]。目前99mTc-PHC-102是唯一在临床前和临床评估中均显示出良好效果的小分子放射性示踪剂[13],但与正电子放射性示踪剂相比,使用99mTc标记的单光子示踪剂进行全身SPECT成像,具有采集时间长、图像分辨率低的问题,这限制了CAⅨ靶点示踪剂的临床应用,且不利于发现VHL综合征相关微小病灶。
而68Ga-NY104是一种新型靶向CAⅨ的小分子探针,对于CAⅨ具有较高的靶向性。前期研究发现68Ga-NY104对CAⅨ阳性ccRCC具有良好的亲和性[14]。目前正在进行中的多项针对ccRCC的临床试验(NCT05879510、NCT05879471、NCT05879497)均显示68Ga-NY104 PET/CT对于ccRCC,特别是复发转移性肾癌展现出良好性能(数据尚未发表),具有较高的临床开发潜力,但对于VHL综合征的评估目前尚在早期探索阶段。在本例患者中,68Ga-NY104有效检测出VHL综合征相关的肾脏、胰腺、肝转移病灶及小脑病灶,进一步提示了68Ga-NY104作为“一站式”示踪剂检出VHL相关病灶的应用前景。但目前相关数据仍较少,需更大样本量的VHL综合征人群进一步验证其诊断效能。
作者贡献:阎歆淳负责撰写论文; 霍力提供技术支持、审阅论文。利益冲突:所有作者均声明不存在利益冲突 -
图 1 患者18F-FDG PET/CT检查(2023.11.11)
A.最大密度投影图;B.肝脏增大见多发大小不等放射性摄取增高结节及团块,部分相互融合,最大截面约15.0 cm× 7.3 cm,SUVmax=18.9,TBR=11.8(中图箭头);胰腺多发囊性密度灶,体尾部为著,最大长径约4.0 cm;C.右侧第7后肋、T11、左侧股骨头及股骨颈见放射性摄取增高灶,部分伴骨质破坏,SUVmax=17.0,TBR=10.6(箭头);D.双肾见多个实性结节,最大位于左肾上极,大小约2.0 cm(左图箭头),放射性摄取与周围肾脏一致,SUVmax=2.3,TBR=1.4;SUV(standardized uptake value):标准化摄取值;TBR(tumor to background ratio):肿瘤背景比值(以血池作为背景摄取)
Figure 1. This patient's 18F-FDG PET/CT (2023.11.11)
A.maximal intensity projection image; B.the liver is enlarged with multiple nodules and masses of varying sizes showing increased radiotracer uptake, some of which are fused together, the largest cross-section being approximately 15.0 cm×7.3 cm, SUVmax=18.9, TBR=11.8 (middle arrow); multiple cystic density lesions in the pancreas, predominantly in the body and tail, with the largest being approximately 4.0 cm in length; C.increased radiotracer uptake is seen in the right 7th posterior rib, T11 vertebra, left femoral head, and femoral neck, some with bone destruction, SUVmax=17.0, TBR=10.6(arrow); D. multiple solid nodules are seen in both kidneys, the largest located at the upper pole of the left kidney, measuring approximately 2.0 cm (left arrow), with radiotracer uptake similar to the surrounding renal tissue, SUVmax=2.3, TBR=1.4; SUV: standardized uptake value; TBR: tumor to background ratio (with the blood pool as the background uptake)
图 2 患者68Ga-NY104 PET/CT检查(2023.11.14)
A.最大密度投影图;B.胰头可见一软组织密度肿物,放射性摄取异常增高,SUVmax=22.9,TBR=28.6(左图);肝内可见多发放射性摄取增高的转移灶,最大者位于右叶,融合成团片状,SUVmax=12.9,TBR=16.1 (右图);C.全身骨骼多发放射性摄取增高灶,SUVmax=14.2,TBR=17.7;D.左肾上极(左侧箭头)及右肾中部(右侧箭头)分别可见一软组织密度肿物,较大者约2.5 cm,放射性摄取增高,SUVmax=17.2,TBR=21.5(68Ga-NY104在正常肾皮质中存在生理性摄取);E.左小脑上脚(左侧箭头)、左小脑扁桃体(右侧箭头)可见放射性摄取稍增高灶,SUVmax=5.5,TBR=6.8;SUV、TBR: 同图 1
Figure 2. This patient's 68Ga-NY104 PET/CT (2023.11.14)
A.maximal intensity projection image; B.a soft tissue density mass is visible in the pancreatic head with abnormally increased radiotracer uptake, SUVmax=22.9, TBR=28.6(left); Multiple metastatic lesions with increased radiotracer uptake are visible in the liver, the largest located in the right lobe, forming a confluent mass, SUVmax=12.9, TBR=16.1(right); C.multiple sites of increased radiotracer uptake in the whole skeletal system, SUVmax=14.2, TBR=17.7; D.soft tissue density masses are visible in the upper pole of the left kidney (left arrow) and the middle part of the right kidney (right arrow), the larger one approximately 2.5 cm, with increased radiotracer uptake, SUVmax=17.2, TBR=21.5(68Ga-NY104 shows physiological uptake in the normal renal cortex); E.wlightly increased radiotracer uptake is visible in the left superior cerebellar peduncle (left arrow) and the left cerebellar tonsil (right arrow), SUVmax=5.5, TBR=6.8; SUV, TBR: same as Fig. 1
-
[1] Maddock I R, Moran A, Maher E R, et al. A genetic register for von Hippel-Lindau disease[J]. J Med Genet, 1996, 33(2): 120-127. DOI: 10.1136/jmg.33.2.120
[2] Lonser R R, Glenn G M, Walther M, et al. Von Hippel-Lindau disease[J]. Lancet, 2003, 361(9374): 2059-2067. DOI: 10.1016/S0140-6736(03)13643-4
[3] 北京医学会罕见病分会. 中国von Hippel-Lindau病诊治专家共识[J]. 中华医学杂志, 2018, 98(28): 2220-2224. DOI: 10.3760/cma.j.issn.0376-2491.2018.28.002 Rare Diseases Branch of Beijing Medical Association. Consensus among Chinese experts in the diagnosis and treatment of von Hippel-Lindau disease[J]. Natl Med J China, 2018, 98(28): 2220-2224. DOI: 10.3760/cma.j.issn.0376-2491.2018.28.002
[4] Filling-Katz M R, Choyke P L, Oldfield E, et al. Central nervous system involvement in von Hippel-Lindau disease[J]. Neurology, 1991, 41(1): 41-46. DOI: 10.1212/WNL.41.1.41
[5] Walther M M, Choyke P L, Glenn G, et al. Renal cancer in families with hereditary renal cancer: prospective analysis of a tumor size threshold for renal parenchymal sparing surgery[J]. J Urol, 1999, 161(5): 1475-1479. DOI: 10.1016/S0022-5347(05)68930-6
[6] Poston C D, Jaffe G S, Lubensky I A, et al. Characteriza-tion of the renal pathology of a familial form of renal cell carcinoma associated with von Hippel-Lindau disease: clinical and molecular genetic implications[J]. J Urol, 1995, 153(1): 22-26. DOI: 10.1097/00005392-199501000-00009
[7] Charlesworth M, Verbeke C S, Falk G A, et al. Pancreatic lesions in von Hippel-Lindau disease? A systematic review and meta-synthesis of the literature[J]. J Gastrointest Surg, 2012, 16(7): 1422-1428. DOI: 10.1007/s11605-012-1847-0
[8] Ganeshan D, Menias C O, Pickhardt P J, et al. Tumors in von Hippel-Lindau syndrome: from head to toe-comprehen-sive state-of-the-art review[J]. Radiographics, 2018, 38(3): 849-866. DOI: 10.1148/rg.2018170156
[9] Leung R S, Biswas S V, Duncan M, et al. Imaging features of von Hippel-Lindau disease[J]. Radiographics, 2008, 28(1): 65-79. DOI: 10.1148/rg.281075052
[10] Daniels A B, Tirosh A, Huntoon K, et al. Guidelines for surveillance of patients with von Hippel-Lindau disease: consensus statement of the International VHL Surveillance Guidelines Consortium and VHL Alliance[J]. Cancer, 2023, 129(19): 2927-2940. DOI: 10.1002/cncr.34896
[11] de Campos N S P, Souza B S, Da Silva G C P, et al. Carbonic anhydrase Ⅸ: A renewed target for cancer immunotherapy[J]. Cancers (Basel), 2022, 14(6): 1392. DOI: 10.3390/cancers14061392
[12] Chatzopoulos K, Aubry M C, Gupta S. Immunohistochemical expression of carbonic anhydrase 9, glucose transporter 1, and paired box 8 in von Hippel-Lindau disease-related lesions[J]. Hum Pathol, 2022, 123: 93-101. DOI: 10.1016/j.humpath.2022.02.009
[13] Krall N, Pretto F, Mattarella M, et al. A 99mTc-labeled ligand of carbonic anhydrase Ⅸ selectively targets renal cell carcinoma in vivo[J]. J Nucl Med, 2016, 57(6): 943-949. DOI: 10.2967/jnumed.115.170514
[14] Zhu W J, Li X Y, Zheng G Y, et al. Preclinical and pilot clinical evaluation of a small-molecule carbonic anhydrase Ⅸ targeting PET tracer in clear cell renal cell carcinoma[J]. Eur J Nucl Med Mol Imaging, 2023, 50(10): 3116-3125. DOI: 10.1007/s00259-023-06248-7