Citation: | SU Pengfei, YU Jianchun. Progress in the Research on the Role of Tumor-associated Macrophages in Drug-resistance and Treatment of Tumors[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(3): 480-486. DOI: 10.12290/xhyxzz.2021-0605 |
[1] |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68: 394-424. DOI: 10.3322/caac.21492
|
[2] |
Zhang T, Yuan Q, Gu Z, et al. Advances of proteomics technologies for multidrug-resistant mechanisms[J]. Future Med Chem, 2019, 11: 2573-2593. DOI: 10.4155/fmc-2018-0507
|
[3] |
Taddia L, D'Arca D, Ferrari S, et al. Inside the biochemical pathways of thymidylate synthase perturbed by anticancer drugs: Novel strategies to overcome cancer chemoresistance[J]. Drug Resist Updat, 2015, 23: 20-54. DOI: 10.1016/j.drup.2015.10.003
|
[4] |
Takeya M, Komohara Y. Role of tumor-associated macrophages in human malignancies: friend or foe?[J]. Pathol Int, 2016, 66: 491-505. DOI: 10.1111/pin.12440
|
[5] |
Wang M, Zhao J, Zhang L, et al. Role of tumor microenvironment in tumorigenesis[J]. J Cancer, 2017, 8: 761-773. DOI: 10.7150/jca.17648
|
[6] |
Mills CD, Kincaid K, Alt JM, et al. M-1/M-2 macrophages and the Th1/Th2 paradigm[J]. J Immunol, 2000, 164: 6166-6173. DOI: 10.4049/jimmunol.164.12.6166
|
[7] |
Zhu J, Zhi Q, Zhou BP, et al. The role of tumor associated macrophages in the tumor microenvironment: mechanism and functions[J]. Anticancer Agents Med Chem, 2016, 16: 1133-1141. DOI: 10.2174/1871520616666160520112622
|
[8] |
Schultze JL, Schmidt SV. Molecular features of macrophage activation[J]. Semin Immunol, 2015, 27: 416-423. DOI: 10.1016/j.smim.2016.03.009
|
[9] |
Jeannin P, Paolini L, Adam C, et al. The roles of CSFs on the functional polarization of tumor-associated macrophages[J]. FEBS J, 2018, 285: 680-699. DOI: 10.1111/febs.14343
|
[10] |
Ostuni R, Kratochvill F, Murray PJ, et al. Macrophages and cancer: from mechanisms to therapeutic implications[J]. Trends Immunol, 2015, 36: 229-239. DOI: 10.1016/j.it.2015.02.004
|
[11] |
Li X, Liu R, Su X, et al. Harnessing tumor-associated macrophages as aids for cancer immunotherapy[J]. Mol Cancer, 2019, 18: 177. DOI: 10.1186/s12943-019-1102-3
|
[12] |
Wu K, Lin K, Li X, et al. Redefining tumor-associated Macrophage subpopulations and functions in the tumor microenvironment[J]. Front Immunol, 2020, 11: 1731. DOI: 10.3389/fimmu.2020.01731
|
[13] |
Xue J, Schmidt SV, Sander J, et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation[J]. Immunity, 2014, 40: 274-288. DOI: 10.1016/j.immuni.2014.01.006
|
[14] |
Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas[J]. J Clin Invest, 2012, 122: 787-795. DOI: 10.1172/JCI59643
|
[15] |
Candido JB, Morton JP, Bailey P, et al. CSF1R(+) macrophages sustain pancreatic tumor growth through T cell Suppression and maintenance of key gene programs that define the squamous subtype[J]. Cell Rep, 2018, 23: 1448-1460. DOI: 10.1016/j.celrep.2018.03.131
|
[16] |
Li M, Li M, Yang Y, et al. Remodeling tumor immune microenvironment via targeted blockade of PI3K-gamma and CSF-1/CSF-1R pathways in tumor associated macrophages for pancreatic cancer therapy[J]. J Control Release, 2020, 321: 23-35. DOI: 10.1016/j.jconrel.2020.02.011
|
[17] |
Kowal J, Kornete M, Joyce JA. Re-education of macrophages as a therapeutic strategy in cancer[J]. Immunotherapy, 2019, 11: 677-689. DOI: 10.2217/imt-2018-0156
|
[18] |
Sarode P, Zheng X, Giotopoulou GA, et al. Reprogramm-ing of tumor-associated macrophages by targeting beta-catenin/FOSL2/ARID5A signaling: A potential treatment of lung cancer[J]. Sci Adv, 2020, 6: eaaz6105. DOI: 10.1126/sciadv.aaz6105
|
[19] |
Yin Y, Yao S, Hu Y, et al. The immune-microenvironment confers chemoresistance of colorectal cancer through macrophage-derived IL6[J]. Clin Cancer Res, 2017, 23: 7375-7387. DOI: 10.1158/1078-0432.CCR-17-1283
|
[20] |
Li J, He K, Liu P, et al. Iron participated in breast cancer chemoresistance by reinforcing IL-6 paracrine loop[J]. Biochem Biophys Res Commun, 2016, 475: 154-160. DOI: 10.1016/j.bbrc.2016.05.064
|
[21] |
Yang C, He L, He P, et al. Increased drug resistance in breast cancer by tumor-associated macrophages through IL-10/STAT3/bcl-2 signaling pathway[J]. Med Oncol, 2015, 32: 352.
|
[22] |
Wei C, Yang CG, Wang SY, et al. M2 macrophages confer resistance to 5-fluorouracil in colorectal cancer through the activation of CCL22/PI3K/AKT signaling[J]. Onco Targets Ther, 2019, 12: 3051-3063. DOI: 10.2147/OTT.S198126
|
[23] |
Yu S, Li Q, Yu Y, et al. Activated HIF1alpha of tumor cells promotes chemoresistance development via recruiting GDF15-producing tumor-associated macrophages in gastric cancer[J]. Cancer Immunol Immun, 2020, 69: 1973-1987. DOI: 10.1007/s00262-020-02598-5
|
[24] |
Ireland L, Santos A, Ahmed MS, et al. Chemoresistance in pancreatic cancer is driven by stroma-derived insulin-like growth factors[J]. Cancer Res, 2016, 76: 6851-6863. DOI: 10.1158/0008-5472.CAN-16-1201
|
[25] |
Zhang M, Zhang H, Tang F, et al. Doxorubicin resistance mediated by cytoplasmic macrophage colony-stimulating factor is associated with switch from apoptosis to autophagic cell death in MCF-7 breast cancer cells[J]. Exp Biol Med (Maywood), 2016, 241: 2086-2093. DOI: 10.1177/1535370216660399
|
[26] |
Li D, Ji H, Niu X, et al. Tumor-associated macrophages secrete CC-chemokine ligand 2 and induce tamoxifen resistance by activating PI3K/Akt/mTOR in breast cancer[J]. Cancer Sci, 2020, 111: 47-58. DOI: 10.1111/cas.14230
|
[27] |
He Z, Chen D, Wu J, et al. Yes associated protein 1 promotes resistance to 5-fluorouracil in gastric cancer by regulating GLUT3-dependent glycometabolism reprogramming of tumor-associated macrophages[J]. Arch Biochem Biophys, 2021, 702: 108838. DOI: 10.1016/j.abb.2021.108838
|
[28] |
Yu S, Li Q, Wang Y, et al. Tumor-derived LIF promotes chemoresistance via activating tumor-associated macrophages in gastric cancers[J]. Exp Cell Res, 2021, 406: 112734. DOI: 10.1016/j.yexcr.2021.112734
|
[29] |
Wang H, Wang L, Pan H, et al. Exosomes derived from macrophages enhance aerobic glycolysis and chemoresistance in lung cancer by stabilizing c-Myc via the inhibition of NEDD4L[J]. Front Cell Dev Biol, 2021, 8: 231-246.
|
[30] |
Zhu X, Shen H, Yin X, et al. Macrophages derived exosomes deliver miR-223 to epithelial ovarian cancer cells to elicit a chemoresistant phenotype[J]. J Exp Clin Cancer Res, 2019, 38: 81. DOI: 10.1186/s13046-019-1095-1
|
[31] |
Stockmann C, Doedens A, Weidemann A, et al. Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis[J]. Nature, 2008, 456: 814-818. DOI: 10.1038/nature07445
|
[32] |
De Palma M, Lewis CE. Cancer: Macrophages limit chemotherapy[J]. Nature, 2011, 472: 303-304. DOI: 10.1038/472303a
|
[33] |
Li Y, Weng Y, Zhong L, et al. VEGFR3 inhibition chemosensitizes lung adenocarcinoma A549 cells in the tumor-associated macrophage microenvironment through upregulation of p53 and PTEN[J]. Oncol Rep, 2017, 38: 2761-2773. DOI: 10.3892/or.2017.5969
|
[34] |
Dalton HJ, Pradeep S, Mcguire M, et al. Macrophages facilitate resistance to anti-VEGF therapy by altered VEGFR expression[J]. Clin Cancer Res, 2017, 23: 7034-7046. DOI: 10.1158/1078-0432.CCR-17-0647
|
[35] |
Bracci L, Schiavoni G, Sistigu A, et al. Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer[J]. Cell Death Differ, 2014, 21: 15-25. DOI: 10.1038/cdd.2013.67
|
[36] |
Denardo DG, Brennan DJ, Rexhepaj E, et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy[J]. Cancer Discov, 2011, 1: 54-67. DOI: 10.1158/2159-8274.CD-10-0028
|
[37] |
Baghdadi M, Wada H, Nakanishi S, et al. Chemotherapy-induced IL-34 enhances immunosuppression by tumor-associated macrophages and mediates survival of chemoresistant lung cancer cells[J]. Cancer Res, 2016, 76: 6030-6042. DOI: 10.1158/0008-5472.CAN-16-1170
|
[38] |
Larionova I, Cherdyntseva N, Liu T, et al. Interaction of tumor-associated macrophages and cancer chemotherapy[J]. Oncoimmunology, 2019, 8: 1596004. DOI: 10.1080/2162402X.2019.1596004
|
[39] |
Vahidian F, Duijf P, Safarzadeh E, et al. Interactions between cancer stem cells, immune system and some environmental components: Friends or foes?[J]. Immunol Lett, 2019, 208: 19-29. DOI: 10.1016/j.imlet.2019.03.004
|
[40] |
Xiang T, Long H, He L, et al. Interleukin-17 produced by tumor microenvironment promotes self-renewal of CD133+ cancer stem-like cells in ovarian cancer[J]. Oncogene, 2015, 34: 165-176. DOI: 10.1038/onc.2013.537
|
[41] |
Mitchem JB, Brennan DJ, Knolhoff BL, et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses[J]. Cancer Res, 2013, 73: 1128-1141. DOI: 10.1158/0008-5472.CAN-12-2731
|
[42] |
Yang L, Dong Y, Li Y, et al. IL-10 derived from M2 macrophage promotes cancer stemness via JAK1/STAT1/NF-kappaB/Notch1 pathway in non-small cell lung cancer[J]. Int J Cancer, 2019, 145: 1099-1110. DOI: 10.1002/ijc.32151
|
[43] |
Zhou W, Ke SQ, Huang Z, et al. Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth[J]. Nat Cell Biol, 2015, 17: 170-182. DOI: 10.1038/ncb3090
|
[44] |
Sainz BJ, Alcala S, Garcia E, et al. Microenvironmental hCAP-18/LL-37 promotes pancreatic ductal adenocarcinoma by activating its cancer stem cell compartment[J]. Gut, 2015, 64: 1921-1935. DOI: 10.1136/gutjnl-2014-308935
|
[45] |
Nywening TM, Belt BA, Cullinan DR, et al. Targeting both tumour-associated CXCR2(+) neutrophils and CCR2(+) macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma[J]. Gut, 2018, 67: 1112-1123. DOI: 10.1136/gutjnl-2017-313738
|
[46] |
Lederman MM, Sieg SF. CCR5 and its ligands: a new axis of evil?[J]. Nat Immunol, 2007, 8: 1283-1285. DOI: 10.1038/ni1207-1283
|
[47] |
Gao D, Cazares LH, Fish EN. CCL5-CCR5 interactions modulate metabolic events during tumor onset to promote tumorigenesis[J]. BMC Cancer, 2017, 17: 834. DOI: 10.1186/s12885-017-3817-0
|
[48] |
Halama N, Zoernig I, Berthel A, et al. Tumoral immune cell exploitation in colorectal cancer metastases can be targeted effectively by anti-CCR5 therapy in cancer patients[J]. Cancer cell, 2016, 29: 587-601. DOI: 10.1016/j.ccell.2016.03.005
|
[49] |
Aldinucci D, Casagrande N. Inhibition of the CCL5/CCR5 axis against the progression of gastric cancer[J]. Int J Mol Sci, 2018, 19: 1477. DOI: 10.3390/ijms19051477
|
[50] |
Huang H, Zepp M, Georges RB, et al. The CCR5 antagonist maraviroc causes remission of pancreatic cancer liver metastasis in nude rats based on cell cycle inhibition and apoptosis induction[J]. Cancer Lett, 2020, 474: 82-93. DOI: 10.1016/j.canlet.2020.01.009
|
[51] |
Lee C, Jeong H, Bae Y, et al. Targeting of M2-like tumor-associated macrophages with a melittin-based pro-apoptotic peptide[J]. J Immunother Cancer, 2019, 7: 147. DOI: 10.1186/s40425-019-0610-4
|
[52] |
Hume DA, Macdonald KP. Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling[J]. Blood, 2012, 119: 1810-1820. DOI: 10.1182/blood-2011-09-379214
|
[53] |
Andersen MN, Etzerodt A, Graversen JH, et al. STAT3 inhibition specifically in human monocytes and macrophages by CD163-targeted corosolic acid-containing liposomes[J]. Cancer Immunol Immunother, 2019, 68: 489-502. DOI: 10.1007/s00262-019-02301-3
|
[54] |
Rodell CB, Arlauckas SP, Cuccarese MF, et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy[J]. Nat Biomed Eng, 2018, 2: 578-588. DOI: 10.1038/s41551-018-0236-8
|
[55] |
Tanei T, Leonard F, Liu X, et al. Redirecting transport of nanoparticle albumin-bound paclitaxel to macrophages enhances therapeutic efficacy against liver metastases[J]. Cancer Res, 2016, 76: 429-439. DOI: 10.1158/0008-5472.CAN-15-1576
|
[56] |
Choi J, Kim HY, Ju EJ, et al. Use of macrophages to deliver therapeutic and imaging contrast agents to tumors[J]. Biomaterials, 2012, 33: 4195-4203. DOI: 10.1016/j.biomaterials.2012.02.022
|
[1] | ZHANG Song, QIU Luhong, LIU Yingxian, XU Xiqi. Interpretation of JCS 2023 Guideline on the Diagnosis and Treatment of Myocarditis[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(2): 320-327. DOI: 10.12290/xhyxzz.2023-0630 |
[2] | YANG Jingyi, XU Qianyue, YU Hong. Research Progress on Pathogenesis and Treatment of Juvenile Localized Scleroderma[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(1): 110-116. DOI: 10.12290/xhyxzz.2021-0178 |
[3] | Rare Diseases Society of Chinese Research Hospital Association, National Rare Diseases Committee, Beijing Rare Disease Diagnosis, Treatment and Protection Society, Gitelman Syndrome Consensus Working Group. Expert Consensus for the Diagnosis and Treatment of Gitelman Syndrome in China (2021)[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(6): 902-912. DOI: 10.12290/xhyxzz.2021-0555 |
[4] | TANG Hui, YING Hong-yan, BAI Chun-mei. Application of Cyclin-dependent Kinase 4/6 Inhibitors in the Treatment of Malignancies and the Mechanism of Drug Resistance[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(6): 758-765. DOI: 10.3969/j.issn.1674-9081.2020.06.022 |
[5] | An-li TONG, Han-zhong LI. Consensus and Controversy on the Treatment of Multiple Endocrine Neoplasia[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(4): 365-369. DOI: 10.3969/j.issn.1674-9081.2020.04.002 |
[6] | Zhi-tong GE, Jian-chu LI. Application of Ultrasonic Intervention in the Treatment of Vascular Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(1): 62-67. DOI: 10.3969/j.issn.1674-9081.20190210 |
[7] | Ye-ye CHEN, Hong-sheng LIU, Shan-qing LI. Diagnosis and Treatment of Pulmonary Large-cell Neuroendocrine Carcinoma[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(4): 393-397. DOI: 10.3969/j.issn.1674-9081.2019.04.016 |
[8] | Yan KANG. Treatments of Sepsis and Septic Shock: Advancements in Controversy[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(5): 421-425. DOI: 10.3969/j.issn.1674-9081.2018.05.009 |
[9] | Exper Group for Treatment of Breast Carcinoma in Eldly Chinese Patients. Consensus on the Treatment of Breast Carcinoma in Elderly Chinese Patients[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(4): 307-312. DOI: 10.3969/j.issn.1674-9081.2018.04.005 |
[10] | Ming-sheng MA, Xü-de ZHANG, Min WEI, Shi-min ZHAO, Zheng-qing QIU. Efficacy of Low Dose Corticosteroid Therapy in Duchenne Muscular Dystrophy[J]. Medical Journal of Peking Union Medical College Hospital, 2014, 5(4): 384-388. DOI: 10.3969/j.issn.1674-9081.2014.04.006 |