Citation: | SHAO Mengjie, XIE Junbo, YANG Zhi, et al. Analysis of meso-structure of 3D woven preforms based on the micro-CT technology[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4129-4138. DOI: 10.13801/j.cnki.fhclxb.20211102.001 |
[1] |
陈利, 焦伟, 王心淼, 等. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8):62-72.
CHEN Li, JIAO Wei, WANG Xinmiao, et al. Research progress on mechanical properties of 3D woven composites[J]. Journal of Materials Engineering,2020,48(8):62-72(in Chinese).
|
[2] |
SALEH M N, YUDHANTO A, POTLURI P, et al. Characte-rising the loading direction sensitivity of 3D woven composites: Effect of Z-binder architecture[J]. Composites Part A: Applied Science and Manufacturing, 2016, 90: 577-588.
|
[3] |
YANG Z, JIAO Y N, XIE J B, et al. Modeling of 3D woven fibre structures by numerical simulation of the weaving process[J]. Composites Science and Technology, 2021, 206: 108679.
|
[4] |
XU F, SUN L, ZHU L, et al. X-ray 3D microscopy analysis of fracture mechanisms for 3D orthogonal woven E-glass/epoxy composites with drilled and moulded-in holes[J]. Composites Part B: Engineering, 2018, 133: 193-202.
|
[5] |
GOMMER F, ENDRUWEIT A, LONG A C. Analysis of filament arrangements and generation of statistically equiva-lent composite micro-structures[J]. Composites Science and Technology, 2014, 99: 45-51.
|
[6] |
GOMMER F, ENDRUWEIT A, LONG A C. Quantification of micro-scale variability in fibre bundles[J]. Composites Part A: Applied Science and Manufacturing, 2016, 87: 131-137.
|
[7] |
DAI S, CUNNINGHAM P R, MARSHALL S, et al. Influence of fibre architecture on the tensile, compressive and flexu-ral behaviour of 3D woven composites[J]. Composites Part A: Applied Science and Manufacturing, 2015, 69: 195-207.
|
[8] |
EMERSON M J, DAHL V A, CONRADSEN K, et al. Statisti-cal validation of individual fiber segmentation from tomograms and microscopy[J]. Composites Science and Technology, 2018, 160: 208-215.
|
[9] |
ISART N, SAID B E, IVANOV D S, et al. Internal geometric modelling of 3D woven composites: A comparison between different approaches[J]. Composite Structures, 2015, 132: 1219-1230.
|
[10] |
ISART N, MAYUGO J A, BLANCO N, et al. Geometric model for 3D through-thickness orthogonal interlock composites[J]. Composite Structures, 2015, 119: 787-798.
|
[11] |
BARBURSKI M, STRAUMIT I, ZHANG X, et al. Micro-CT analysis of internal structure of sheared textile composite reinforcement[J]. Composites Part A: Applied Science and Manufacturing, 2015, 73: 45-54.
|
[12] |
SISODIA S M, GARCEA S C, GEORGE A R, et al. High-resolution computed tomography in resin infused woven carbon fibre composites with voids[J]. Composites Science and Technology, 2016, 131: 12-21.
|
[13] |
GARCEA S C, WANG Y, WITHERS P J. X-ray computed tomography of polymer composites[J]. Composites Science and Technology, 2018, 156: 305-319.
|
[14] |
LI Z, GUO L, ZHANG L, et al. In situ experimental investigation on the out-plane damage evolution of 3D woven carbon-fiber reinforced composites[J]. Composites Science and Technology, 2018, 162: 101-109.
|
[15] |
NAOUAR N, VASIUKOV D, PARK C H, et al. Meso-FE modelling of textile composites and X-ray tomography[J]. Journal of Materials Science, 2020, 55(36): 16969 -16989.
|
[16] |
WIJAYA W, KELLY P A, BICKERTON S. A novel methodology to construct periodic multi-layer 2D woven unit cells with random nesting configurations directly from μCT-scans[J]. Composites Science and Technology, 2020, 193: 108125.
|
[17] |
WINTIBA B, VASIUKOV D, PANIER S, et al. Automated reconstruction and conformal discretization of 3D woven composite CT scans with local fiber volume fraction control[J]. Composite Structures, 2020, 248: 112438.
|
[18] |
FANG G D, CHEN C H, YUAN S G, et al. Micro-tomography based geometry modeling of three-dimensional braided composites[J]. Applied Composite Materials, 2018, 25(3): 469-483.
|
[19] |
FANG G D, CHEN C H, MENG S H, et al. Mechanical analysis of three-dimensional braided composites by using realistic voxel-based model with local mesh refinement[J]. Journal of Composite Materials,2019,53(4):475-487. DOI: 10.1177/0021998318786541
|
[20] |
VANAERSCHOT A, COX B N, LOMOV S V, et al. Stochastic framework for quantifying the geometrical variability of laminated textile composites using micro-computed tomography[J]. Composites Part A: Applied Science and Manufacturing, 2014, 44: 122-131.
|
[21] |
VANAERSCHOT A, PANERAI F, CASSELL A, et al. Stochas-tic characterisation methodology for 3D textiles based on microtomography[J]. Composite Structures, 2017, 173: 44-52.
|
[22] |
VANAERSCHOT A, COX B N, LOMOV S V, et al. Experimentally validated stochastic geometry description for textile composite reinforcements[J]. Composites Science and Technology, 2016, 122: 122-129.
|
[23] |
QUAN Z, LARIMORE Z, QIN X, et al. Microstructural characterization of additively manufactured multi-directional preforms and composites via X-ray microcomputed tomography[J]. Composites Science and Technology, 2016, 131: 48-60.
|
[24] |
HEMMER J, BURTIN C, COMAS-CARDONA S, et al. Unloading during the infusion process: Direct measurement of the dual-scale fibrous microstructure evolution with X-ray computed tomography[J]. Composites Part A: Applied Science and Manufacturing, 2018, 115: 147-156.
|
[25] |
ALI M A, UMER R, KHAN K A, et al. In-plane virtual permeability characterization of 3D woven fabrics using a hybrid experimental and numerical approach[J]. Composites Science and Technology, 2019, 173: 99-109.
|
[26] |
TORRES J J, SIMMONS M, SKET F, et al. An analysis of void formation mechanisms in out-of-autoclave prepregs by means of X-ray computed tomography[J]. Composites Part A: Applied Science and Manufacturing, 2019, 117: 230-242.
|
[27] |
LI Y, SUN B, GU B. Impact shear damage characterizations of 3D braided composite with X-ray microcomputed tomography and numerical methodologies[J]. Composite Structures, 2017, 176: 43-54.
|
[28] |
GIGLIOTTI M, PANNIER Y, GONZALEZ R A, et al. X-ray micro-computed-tomography characterization of cracks induced by thermal cycling in non-crimp 3D orthogonal woven composite materials with porosity[J]. Composites Part A: Applied Science and Manufacturing, 2018, 112: 100-110.
|
[29] |
WARREN K C, LOPEZ-ANIDO R A, GOERING J. Experimental investigation of three-dimensional woven compo-sites[J]. Composites Part A: Applied Science and Manufacturing, 2015, 73: 242-259.
|
[30] |
JIAO W, CHEN L, XIE J, et al. Effect of weaving structures on the geometry variations and mechanical properties of 3D LTL woven composites[J]. Composite Structures, 2020, 252: 112756
|
[31] |
PAZMINO J, CARVELLI V, LOMOV S V. Micro-CT analysis of the internal deformed geometry of a non-crimp 3D orthogonal weave E-glass composite reinforcement[J]. Composites Part B: Engineering, 2014, 65: 147-157.
|
[32] |
BROWN L P, ENDRUWEIT A, LONG A, et al. Characterisation and modelling of complex textile geometries using TexGen[J]. IOP Conference Series: Materials Science and Engineering,2018,406(1):012024.
|
[1] | QIAN Qiwei, ZHANG Xin, YANG Zhenjun, SHEN Zhen, XIAO Jinyou. Intelligent identification of micro components and defects of 3D braided C/C composites based on deep learning of X-ray CT images[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3540-3547. DOI: 10.13801/j.cnki.fhclxb.20231101.001 |
[2] | ZHU Wanqing, XIE Junbo, WU Lanfang, CHEN Li, YANG Lin, LIU Jingyan. Quasi-fiber scale modelling of 3D woven preforms[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1528-1538. DOI: 10.13801/j.cnki.fhclxb.20230816.002 |
[3] | YANG Bin, WANG Jihui, FENG Yuwei, YANG Chao, NI Aiqing. Advances in Micro-CT aided numerical simulation of fabric-reinforced composites[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5466-5485. DOI: 10.13801/j.cnki.fhclxb.20230427.001 |
[4] | GUO Zhenzhen, XIE Junbo, JIAO Wei, ZHU Wanqing, SHAO Mengjie, YANG Zhi, CHEN Li. Bending properties of carbon fiber 3D woven preforms[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3396-3404. DOI: 10.13801/j.cnki.fhclxb.20220811.003 |
[5] | CAO Pengjun, ZHAO Wenbin, YANG Bin, NI Aiqing, WANG Jihui. Meso-structure analysis and permeability prediction of satin fabric based on Micro-CT[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1751-1763. DOI: 10.13801/j.cnki.fhclxb.20220420.002 |
[6] | MIAO Yanchun, ZHANG Yu, SELYUTINA Nina, SMIRNOV Ivan, DENG Kezhao, LI Beibei, DU Sizhe, LIU Yuanzhen, MA Gang. Damage analysis of meso-scale recycled aggregate thermal insulation concrete based on X-CT after high temperature[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2829-2843. DOI: 10.13801/j.cnki.fhclxb.20210716.007 |
[7] | WANG Shi, ZHAO Xianfeng, MI Hongze. Damage analysis of cold recycled mixture under freeze-thaw environment based on CT technology[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1692-1700. DOI: 10.13801/j.cnki.fhclxb.20210601.004 |
[8] | SHANG Xiaoyu, YANG Jingwei, LI Jiangshan. Fractal characteristics of meso-failure crack in recycled coarse aggregate concrete based on CT image[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1774-1784. DOI: 10.13801/j.cnki.fhclxb.20190917.002 |
[9] | WU Zehong, WEI Ya. Microstructure and hydration degree of cement paste based on CT[J]. Acta Materiae Compositae Sinica, 2020, 37(4): 971-977. DOI: 10.13801/j.cnki.fhclxb.20190612.001 |
[10] | FENG Yanjian, FENG Zude, LI Siwei, ZHANG Weihua, LUAN Xingang, LIU Yongsheng, CHENG Laifei. Nondestructive testing and analysis of SiC coating on surface of C/SiC composites after oxidation with Micro CT[J]. Acta Materiae Compositae Sinica, 2011, 28(5): 126-132. |
1. |
颜丙越,张卓,尹立,何剑飞. 基于数字单元法的平纹织物压实形态变化研究. 复合材料科学与工程. 2025(02): 137-144 .
![]() | |
2. |
朱琬清,谢军波,吴兰芳,陈利,杨林,刘静妍. 3D机织预制体准纤维尺度建模方法. 复合材料学报. 2024(03): 1528-1538 .
![]() | |
3. |
张鸿宇,钱震,蔡宏祥,牛波,张亚运,龙东辉. 低密度纤维增强纳米孔树脂基复合材料的断裂机制. 复合材料学报. 2023(03): 1764-1772 .
![]() | |
4. |
葛敬冉,刘增飞,乔健伟,梁军. 航空复杂结构纤维预制体成型工艺与复合材料性能仿真研究进展. 航空制造技术. 2022(16): 14-30 .
![]() |