SHAO Mengjie, XIE Junbo, YANG Zhi, et al. Analysis of meso-structure of 3D woven preforms based on the micro-CT technology[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4129-4138. DOI: 10.13801/j.cnki.fhclxb.20211102.001
Citation: SHAO Mengjie, XIE Junbo, YANG Zhi, et al. Analysis of meso-structure of 3D woven preforms based on the micro-CT technology[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4129-4138. DOI: 10.13801/j.cnki.fhclxb.20211102.001

Analysis of meso-structure of 3D woven preforms based on the micro-CT technology

More Information
  • Received Date: August 30, 2021
  • Revised Date: October 10, 2021
  • Accepted Date: October 21, 2021
  • Available Online: November 02, 2021
  • The 3D meso-structures of the fiber preforms was reconstructed based on the micro-computed tomography (micro-CT) technology, two quantitative indexes were proposed to characterize the deformation of the fiber preforms' geometric structure. The influence mechanism of weft densities and thicknesses on the meso-structure of the 3D woven preform was studied. The results show that the micro-CT technology can be used to characterize the cross-section and spatial path of the yarns inside the 3D woven preform effectively. The preform samples with the weft density of 2.0 picks/cm show obvious deformation, and thus are not suitable for practical engineering application. With the increase of the weft density, the internal structure of the fiber preform tends to be stable. The internal structures of the 10 mm samples are more stable than that of the 5 mm samples, however, the cross section and path of the surface yarns still show large deformation.
  • [1]
    陈利, 焦伟, 王心淼, 等. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8):62-72.

    CHEN Li, JIAO Wei, WANG Xinmiao, et al. Research progress on mechanical properties of 3D woven composites[J]. Journal of Materials Engineering,2020,48(8):62-72(in Chinese).
    [2]
    SALEH M N, YUDHANTO A, POTLURI P, et al. Characte-rising the loading direction sensitivity of 3D woven composites: Effect of Z-binder architecture[J]. Composites Part A: Applied Science and Manufacturing, 2016, 90: 577-588.
    [3]
    YANG Z, JIAO Y N, XIE J B, et al. Modeling of 3D woven fibre structures by numerical simulation of the weaving process[J]. Composites Science and Technology, 2021, 206: 108679.
    [4]
    XU F, SUN L, ZHU L, et al. X-ray 3D microscopy analysis of fracture mechanisms for 3D orthogonal woven E-glass/epoxy composites with drilled and moulded-in holes[J]. Composites Part B: Engineering, 2018, 133: 193-202.
    [5]
    GOMMER F, ENDRUWEIT A, LONG A C. Analysis of filament arrangements and generation of statistically equiva-lent composite micro-structures[J]. Composites Science and Technology, 2014, 99: 45-51.
    [6]
    GOMMER F, ENDRUWEIT A, LONG A C. Quantification of micro-scale variability in fibre bundles[J]. Composites Part A: Applied Science and Manufacturing, 2016, 87: 131-137.
    [7]
    DAI S, CUNNINGHAM P R, MARSHALL S, et al. Influence of fibre architecture on the tensile, compressive and flexu-ral behaviour of 3D woven composites[J]. Composites Part A: Applied Science and Manufacturing, 2015, 69: 195-207.
    [8]
    EMERSON M J, DAHL V A, CONRADSEN K, et al. Statisti-cal validation of individual fiber segmentation from tomograms and microscopy[J]. Composites Science and Technology, 2018, 160: 208-215.
    [9]
    ISART N, SAID B E, IVANOV D S, et al. Internal geometric modelling of 3D woven composites: A comparison between different approaches[J]. Composite Structures, 2015, 132: 1219-1230.
    [10]
    ISART N, MAYUGO J A, BLANCO N, et al. Geometric model for 3D through-thickness orthogonal interlock composites[J]. Composite Structures, 2015, 119: 787-798.
    [11]
    BARBURSKI M, STRAUMIT I, ZHANG X, et al. Micro-CT analysis of internal structure of sheared textile composite reinforcement[J]. Composites Part A: Applied Science and Manufacturing, 2015, 73: 45-54.
    [12]
    SISODIA S M, GARCEA S C, GEORGE A R, et al. High-resolution computed tomography in resin infused woven carbon fibre composites with voids[J]. Composites Science and Technology, 2016, 131: 12-21.
    [13]
    GARCEA S C, WANG Y, WITHERS P J. X-ray computed tomography of polymer composites[J]. Composites Science and Technology, 2018, 156: 305-319.
    [14]
    LI Z, GUO L, ZHANG L, et al. In situ experimental investigation on the out-plane damage evolution of 3D woven carbon-fiber reinforced composites[J]. Composites Science and Technology, 2018, 162: 101-109.
    [15]
    NAOUAR N, VASIUKOV D, PARK C H, et al. Meso-FE modelling of textile composites and X-ray tomography[J]. Journal of Materials Science, 2020, 55(36): 16969 -16989.
    [16]
    WIJAYA W, KELLY P A, BICKERTON S. A novel methodology to construct periodic multi-layer 2D woven unit cells with random nesting configurations directly from μCT-scans[J]. Composites Science and Technology, 2020, 193: 108125.
    [17]
    WINTIBA B, VASIUKOV D, PANIER S, et al. Automated reconstruction and conformal discretization of 3D woven composite CT scans with local fiber volume fraction control[J]. Composite Structures, 2020, 248: 112438.
    [18]
    FANG G D, CHEN C H, YUAN S G, et al. Micro-tomography based geometry modeling of three-dimensional braided composites[J]. Applied Composite Materials, 2018, 25(3): 469-483.
    [19]
    FANG G D, CHEN C H, MENG S H, et al. Mechanical analysis of three-dimensional braided composites by using realistic voxel-based model with local mesh refinement[J]. Journal of Composite Materials,2019,53(4):475-487. DOI: 10.1177/0021998318786541
    [20]
    VANAERSCHOT A, COX B N, LOMOV S V, et al. Stochastic framework for quantifying the geometrical variability of laminated textile composites using micro-computed tomography[J]. Composites Part A: Applied Science and Manufacturing, 2014, 44: 122-131.
    [21]
    VANAERSCHOT A, PANERAI F, CASSELL A, et al. Stochas-tic characterisation methodology for 3D textiles based on microtomography[J]. Composite Structures, 2017, 173: 44-52.
    [22]
    VANAERSCHOT A, COX B N, LOMOV S V, et al. Experimentally validated stochastic geometry description for textile composite reinforcements[J]. Composites Science and Technology, 2016, 122: 122-129.
    [23]
    QUAN Z, LARIMORE Z, QIN X, et al. Microstructural characterization of additively manufactured multi-directional preforms and composites via X-ray microcomputed tomography[J]. Composites Science and Technology, 2016, 131: 48-60.
    [24]
    HEMMER J, BURTIN C, COMAS-CARDONA S, et al. Unloading during the infusion process: Direct measurement of the dual-scale fibrous microstructure evolution with X-ray computed tomography[J]. Composites Part A: Applied Science and Manufacturing, 2018, 115: 147-156.
    [25]
    ALI M A, UMER R, KHAN K A, et al. In-plane virtual permeability characterization of 3D woven fabrics using a hybrid experimental and numerical approach[J]. Composites Science and Technology, 2019, 173: 99-109.
    [26]
    TORRES J J, SIMMONS M, SKET F, et al. An analysis of void formation mechanisms in out-of-autoclave prepregs by means of X-ray computed tomography[J]. Composites Part A: Applied Science and Manufacturing, 2019, 117: 230-242.
    [27]
    LI Y, SUN B, GU B. Impact shear damage characterizations of 3D braided composite with X-ray microcomputed tomography and numerical methodologies[J]. Composite Structures, 2017, 176: 43-54.
    [28]
    GIGLIOTTI M, PANNIER Y, GONZALEZ R A, et al. X-ray micro-computed-tomography characterization of cracks induced by thermal cycling in non-crimp 3D orthogonal woven composite materials with porosity[J]. Composites Part A: Applied Science and Manufacturing, 2018, 112: 100-110.
    [29]
    WARREN K C, LOPEZ-ANIDO R A, GOERING J. Experimental investigation of three-dimensional woven compo-sites[J]. Composites Part A: Applied Science and Manufacturing, 2015, 73: 242-259.
    [30]
    JIAO W, CHEN L, XIE J, et al. Effect of weaving structures on the geometry variations and mechanical properties of 3D LTL woven composites[J]. Composite Structures, 2020, 252: 112756
    [31]
    PAZMINO J, CARVELLI V, LOMOV S V. Micro-CT analysis of the internal deformed geometry of a non-crimp 3D orthogonal weave E-glass composite reinforcement[J]. Composites Part B: Engineering, 2014, 65: 147-157.
    [32]
    BROWN L P, ENDRUWEIT A, LONG A, et al. Characterisation and modelling of complex textile geometries using TexGen[J]. IOP Conference Series: Materials Science and Engineering,2018,406(1):012024.
  • Related Articles

    [1]QIAN Qiwei, ZHANG Xin, YANG Zhenjun, SHEN Zhen, XIAO Jinyou. Intelligent identification of micro components and defects of 3D braided C/C composites based on deep learning of X-ray CT images[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3540-3547. DOI: 10.13801/j.cnki.fhclxb.20231101.001
    [2]ZHU Wanqing, XIE Junbo, WU Lanfang, CHEN Li, YANG Lin, LIU Jingyan. Quasi-fiber scale modelling of 3D woven preforms[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1528-1538. DOI: 10.13801/j.cnki.fhclxb.20230816.002
    [3]YANG Bin, WANG Jihui, FENG Yuwei, YANG Chao, NI Aiqing. Advances in Micro-CT aided numerical simulation of fabric-reinforced composites[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5466-5485. DOI: 10.13801/j.cnki.fhclxb.20230427.001
    [4]GUO Zhenzhen, XIE Junbo, JIAO Wei, ZHU Wanqing, SHAO Mengjie, YANG Zhi, CHEN Li. Bending properties of carbon fiber 3D woven preforms[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3396-3404. DOI: 10.13801/j.cnki.fhclxb.20220811.003
    [5]CAO Pengjun, ZHAO Wenbin, YANG Bin, NI Aiqing, WANG Jihui. Meso-structure analysis and permeability prediction of satin fabric based on Micro-CT[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1751-1763. DOI: 10.13801/j.cnki.fhclxb.20220420.002
    [6]MIAO Yanchun, ZHANG Yu, SELYUTINA Nina, SMIRNOV Ivan, DENG Kezhao, LI Beibei, DU Sizhe, LIU Yuanzhen, MA Gang. Damage analysis of meso-scale recycled aggregate thermal insulation concrete based on X-CT after high temperature[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2829-2843. DOI: 10.13801/j.cnki.fhclxb.20210716.007
    [7]WANG Shi, ZHAO Xianfeng, MI Hongze. Damage analysis of cold recycled mixture under freeze-thaw environment based on CT technology[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1692-1700. DOI: 10.13801/j.cnki.fhclxb.20210601.004
    [8]SHANG Xiaoyu, YANG Jingwei, LI Jiangshan. Fractal characteristics of meso-failure crack in recycled coarse aggregate concrete based on CT image[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1774-1784. DOI: 10.13801/j.cnki.fhclxb.20190917.002
    [9]WU Zehong, WEI Ya. Microstructure and hydration degree of cement paste based on CT[J]. Acta Materiae Compositae Sinica, 2020, 37(4): 971-977. DOI: 10.13801/j.cnki.fhclxb.20190612.001
    [10]FENG Yanjian, FENG Zude, LI Siwei, ZHANG Weihua, LUAN Xingang, LIU Yongsheng, CHENG Laifei. Nondestructive testing and analysis of SiC coating on surface of C/SiC composites after oxidation with Micro CT[J]. Acta Materiae Compositae Sinica, 2011, 28(5): 126-132.
  • Cited by

    Periodical cited type(4)

    1. 颜丙越,张卓,尹立,何剑飞. 基于数字单元法的平纹织物压实形态变化研究. 复合材料科学与工程. 2025(02): 137-144 .
    2. 朱琬清,谢军波,吴兰芳,陈利,杨林,刘静妍. 3D机织预制体准纤维尺度建模方法. 复合材料学报. 2024(03): 1528-1538 . 本站查看
    3. 张鸿宇,钱震,蔡宏祥,牛波,张亚运,龙东辉. 低密度纤维增强纳米孔树脂基复合材料的断裂机制. 复合材料学报. 2023(03): 1764-1772 . 本站查看
    4. 葛敬冉,刘增飞,乔健伟,梁军. 航空复杂结构纤维预制体成型工艺与复合材料性能仿真研究进展. 航空制造技术. 2022(16): 14-30 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (1470) PDF downloads (95) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return