GAO Jiawei, DENG Xinkai, HAN Xiaobo, LI Xiao, CHAI Yahao, ZHANG Lei. Correlation of Inflammasomes with Pyroptosis and Effect on Coagulation Function[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(6): 1395-1400. DOI: 10.12290/xhyxzz.2024-0012
Citation: GAO Jiawei, DENG Xinkai, HAN Xiaobo, LI Xiao, CHAI Yahao, ZHANG Lei. Correlation of Inflammasomes with Pyroptosis and Effect on Coagulation Function[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(6): 1395-1400. DOI: 10.12290/xhyxzz.2024-0012

Correlation of Inflammasomes with Pyroptosis and Effect on Coagulation Function

Funds: 

Xinjiang Uygur Autonomous Region Natural Science Foundation 2022D01C645

Xinjiang Uygur Autonomous Region Natural Science Foundation 2020D01A139

More Information
  • Corresponding author:

    ZHANG Lei, E-mail: zhanglei19716240@163.com

  • Received Date: January 05, 2024
  • Accepted Date: February 21, 2024
  • Available Online: June 19, 2024
  • Issue Publish Date: November 29, 2024
  • Disseminated intravascular coagulation (DIC) triggered by sepsis is a major challenge in the emergency and critical care of severely ill patients. The inflammasome is an essential component of the human immune system, and its activation can mediate pyroptosis and then release interleukin (IL)-1β and IL-18, which further activates platelets and the coagulation system and exacerbates inflammatory responses and coagulation processes, thus creating great uncertainty for the treatment and prognosis of sepsis. This article aims to review the correlation between the inflammasome and pyroptosis, as well as their impact on coagulation function, in hope of providing new insights for the clinical treatment of DIC.

  • [1]
    Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta[J]. Mol Cell, 2002, 10(2): 417-426. DOI: 10.1016/S1097-2765(02)00599-3
    [2]
    Sharma M, de Alba E. Structure, activation and regulation of NLRP3 and AIM2 inflammasomes[J]. Int J Mol Sci, 2021, 22(2): 872. DOI: 10.3390/ijms22020872
    [3]
    Tweedell R E, Kanneganti T D. Advances in inflammasome research: recent breakthroughs and future hurdles[J]. Trends Mol Med, 2020, 26(11): 969-971. DOI: 10.1016/j.molmed.2020.07.010
    [4]
    Shahzad K, Fatima S, Khawaja H, et al. Podocyte-specific Nlrp3 inflammasome activation promotes diabetic kidney disease[J]. Kidney Int, 2022, 102(4): 766-779. DOI: 10.1016/j.kint.2022.06.010
    [5]
    Tall AR, Westerterp M. Inflammasomes, neutrophil extracellular traps, and cholesterol[J]. J Lipid Res, 2019, 60(4): 721-727. DOI: 10.1194/jlr.S091280
    [6]
    Xiao L, Magupalli V G, Wu H. Cryo-EM structures of the active NLRP3 inflammasome disc[J]. Nature, 2023, 613(7944): 595-600. DOI: 10.1038/s41586-022-05570-8
    [7]
    Fu J N, Wu H. Structural mechanisms of NLRP3 inflammasome assembly and activation[J]. Annu Rev Immunol, 2023, 41: 301-316. DOI: 10.1146/annurev-immunol-081022-021207
    [8]
    Kayagaki N, Kornfeld O S, Lee B L, et al. NINJ1 mediates plasma membrane rupture during lytic cell death[J]. Nature, 2021, 591(7848): 131-136. DOI: 10.1038/s41586-021-03218-7
    [9]
    Evavold C L, Ruan J B, Tan Y H, et al. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages[J]. Immunity, 2018, 48(1): 35-44. e6. DOI: 10.1016/j.immuni.2017.11.013
    [10]
    Liu X, Xia S Y, Zhang Z B, et al. Channelling inflammation: gasdermins in physiology and disease[J]. Nat Rev Drug Discov, 2021, 20(5): 384-405. DOI: 10.1038/s41573-021-00154-z
    [11]
    Elias E E, Lyons B, Muruve D A. Gasdermins and pyroptosis in the kidney[J]. Nat Rev Nephrol, 2023, 19(5): 337-350. DOI: 10.1038/s41581-022-00662-0
    [12]
    Davie E W, Ratnoff O D. Waterfall sequence for intrinsic blood clotting[J]. Science, 1964, 145(3638): 1310-1312. DOI: 10.1126/science.145.3638.1310
    [13]
    Macfarlane R G. An enzyme cascade in the blood clotting mechanism, and its function as a biochemical amplifier[J]. Nature, 1964, 202: 498-499. DOI: 10.1038/202498a0
    [14]
    Hoffman M, Monroe D M 3rd. A cell-based model of hemostasis[J]. Thromb Haemost, 2001, 85(6): 958-965. DOI: 10.1055/s-0037-1615947
    [15]
    卫凌华, 于潇, 金强, 等. 凝血酶与人类疾病的关系研究进展[J]. 中国实用医刊, 2019, 46(8): 121-125. DOI: 10.3760/cma.j.issn.1674-4756.2019.08.039

    Wei L H, Yu X, Jin Q, et al. Research Progress on the Relationship Between Thrombin and Human Diseases[J]. Chin J Pract Med, 2019, 46(8): 121-125. DOI: 10.3760/cma.j.issn.1674-4756.2019.08.039
    [16]
    Danese S, Vetrano S, Zhang L, et al. The protein C pathway in tissue inflammation and injury: pathogenic role and therapeutic implications[J]. Blood, 2010, 115(6): 1121-1130. DOI: 10.1182/blood-2009-09-201616
    [17]
    Boffa M C. Tissue factor pathway inhibitor: A multifaceted protein beyond its role as an anticoagulant[J]. J Thromb Haemost, 2016, 14(9): 1676-1685.
    [18]
    门剑龙, 徐菲亚, 翟振国. 肝素抵抗的发生机制及临床处理策略[J]. 中华医学杂志, 2023, 103(10): 707-713. DOI: 10.3760/cma.j.cn112137-20220830-01838

    Men J L, Xu F Y, Zhai Z G. The Mechanisms of Heparin Resistance and Clinical Management Strategies[J]. Zhonghua Yi Xue Za Zhi, 2023, 103(10): 707-713. DOI: 10.3760/cma.j.cn112137-20220830-01838
    [19]
    Rezaie A R, Cooper S T, Church F C, et al. Protein C inhibitor is a potent inhibitor of the thrombin-thrombomodulin complex[J]. J Biol Chem, 1995, 270(43): 25336-25339. DOI: 10.1074/jbc.270.43.25336
    [20]
    Ryan T A J, Preston R J S, O'Neill L A J. Immunothro-mbosis and the molecular control of tissue factor by pyroptosis: prospects for new anticoagulants[J]. Biochem J, 2022, 479(6): 731-750. DOI: 10.1042/BCJ20210522
    [21]
    Yamamoto M, Nakagaki T, Kisiel W. Tissue factor-depend-ent autoactivation of human blood coagulation factor Ⅶ[J]. J Biol Chem, 1992, 267(27): 19089-19094. DOI: 10.1016/S0021-9258(18)41745-0
    [22]
    Østerud B, Bjørklid E. Sources of tissue factor[J]. Semin Thromb Hemost, 2006, 32(1): 11-23. DOI: 10.1055/s-2006-933336
    [23]
    Tang Y T, Wang X Y, Li Z Z, et al. Heparin prevents caspase-11-dependent septic lethality Independent of anticoagulant properties[J]. Immunity, 2021, 54(3): 454-467. e6. DOI: 10.1016/j.immuni.2021.01.007
    [24]
    Levi M, Ten Cate H. Disseminated intravascular coagulation[J]. N Engl J Med, 1999, 341(8): 586-592. DOI: 10.1056/NEJM199908193410807
    [25]
    Conway E M, Rosenberg R D. Tumor necrosis factor suppresses transcription of the thrombomodulin gene in endothelial cells[J]. Mol Cell Biol, 1988, 8(12): 5588-5592.
    [26]
    Nemerson Y. The phospholipid requirement of tissue factor in blood coagulation[J]. J Clin Invest, 1968, 47(1): 72-80. DOI: 10.1172/JCI105716
    [27]
    Potere N, Abbate A, Kanthi Y, et al. Inflammasome signaling, thromboinflammation, and venous thromboembolism[J]. JACC Basic Transl Sci, 2023, 8(9): 1245-1261. DOI: 10.1016/j.jacbts.2023.03.017
    [28]
    Rothmeier A S, Marchese P, Petrich B G, et al. Caspase-1-mediated pathway promotes generation of thromboinflam-matory microparticles[J]. J Clin Invest, 2015, 125(4): 1471-1484. DOI: 10.1172/JCI79329
    [29]
    Grover S P, Mackman N. Tissue factor: an essential mediator of hemostasis and trigger of thrombosis[J]. Arterioscler Thromb Vasc Biol, 2018, 38(4): 709-725. DOI: 10.1161/ATVBAHA.117.309846
    [30]
    Yang X Y, Cheng X Y, Tang Y T, et al. Bacterial endotoxin activates the coagulation cascade through gasdermin Ddependent phosphatidylserine exposure[J]. Immunity, 2019, 51(6): 983-996. e6. DOI: 10.1016/j.immuni.2019.11.005
    [31]
    Zhang H, Zeng L, Xie M, et al. TMEM173 drives lethal coagulation in sepsis[J]. Cell Host Microbe, 2020, 27(4): 556-570. e6. DOI: 10.1016/j.chom.2020.02.004
    [32]
    Wu C Q, Lu W, Zhang Y, et al. Inflammasome activation triggers blood clotting and host death through pyroptosis[J]. Immunity, 2019, 50(6): 1401-1411. e4. DOI: 10.1016/j.immuni.2019.04.003
    [33]
    Martinod K, Wagner D D. Thrombosis: tangled up in NETs[J]. Blood, 2014, 123(18): 2768-2776. DOI: 10.1182/blood-2013-10-463646
    [34]
    Cheng K T, Xiong S Q, Ye Z M, et al. Caspase-11-mediated endothelial pyroptosis underlies endotoxemia-induced lung injury[J]. J Clin Invest, 2017, 127(11): 4124-4135. DOI: 10.1172/JCI94495
    [35]
    Tang Y T, Wang X Y, Li Z Z, et al. Heparin prevents caspase-11-dependent septic lethality Independent of anticoagulant properties[J]. Immunity, 2021, 54(3): 454-467. e6. DOI: 10.1016/j.immuni.2021.01.007
    [36]
    Iba T, Levy J H. Inflammation and thrombosis: roles of neutrophils, platelets and endothelial cells and their interactions in thrombus formation during sepsis[J]. J Thromb Haemost, 2018, 16(2): 231-241. DOI: 10.1111/jth.13911
    [37]
    Zhu C R, Liang Y J, Luo Y T, et al. Role of pyroptosis in hemostasis activation in sepsis[J]. Front Immunol, 2023, 14: 1114917. DOI: 10.3389/fimmu.2023.1114917
    [38]
    Coll R C, Hill J R, Day C J, et al. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition[J]. Nat Chem Biol, 2019, 15(6): 556-559. DOI: 10.1038/s41589-019-0277-7
    [39]
    Hu J J, Liu X, Xia S Y, et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation[J]. Nat Immunol, 2020, 21(7): 736-745. DOI: 10.1038/s41590-020-0669-6
    [40]
    Boxer M B, Quinn A M, Shen M, et al. A highly potent and selective caspase 1 inhibitor that utilizes a key 3-cyanopropanoic acid moiety[J]. ChemMedChem, 2010, 5(5): 730-738. DOI: 10.1002/cmdc.200900531
    [41]
    Jing W D, Pilato J L, Kay C, et al. Clostridium septicum α-toxin activates the NLRP3 inflammasome by engaging GPI-anchored proteins[J]. Sci Immunol, 2022, 7(71): eabm1803. DOI: 10.1126/sciimmunol.abm1803
    [42]
    Dong X J, Tu H, Bai X J, et al. Intrinsic/extrinsic apoptosis and pyroptosis contribute to the selective depletion of B cell subsets in septic shock patients[J]. Shock, 2023, 60(3): 345-353.
    [43]
    Cheng J B, Liao Y J, Dong Y, et al. Microglial autophagy defect causes Parkinson disease-like symptoms by accelerat-ing inflammasome activation in mice[J]. Autophagy, 2020, 16(12): 2193-2205. DOI: 10.1080/15548627.2020.1719723
  • Related Articles

    [1]ZHANG Xinyi, LIU Ningning, LI Haimei, WANG Yufeng, LIU Lu, QIAN Qiujin. Cerebral Blood Flow Characteristics of Boys with Different Subtypes of Attention Deficit Hyperactivity Disorder and Their Relationship with Executive Function[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(2): 314-320. DOI: 10.12290/xhyxzz.2024-0510
    [2]LEI Zhenyun, XUE Guozhong, LIU Zhenhua, ZHANG Xinli. Research progress on action mechanism of NLRP3 inflammasome and pyroptosis in diabetic nephropathy[J]. Medical Journal of Peking Union Medical College Hospital. DOI: 10.12290/xhyxzz.2024-0543
    [3]WANG Caihong, LIU Rongxin, TANG Feng, WEI Xiaotao, XU Ziqing, HOU Huaijing, ZHANG Jie, ZHAO Yongqiang, XUE Jianjun. Research Progress on the Role of NLRP3 Inflammasome and Microglia in Cognitive Impairment[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1282-1288. DOI: 10.12290/xhyxzz.2023-0217
    [4]WEI Jiaojiao, LIU Shiwei, DUAN Ruixue, LI Nan, WANG Jiangna. Effects of Vaspin on Pancreatic Beta Cell Function in Type 2 Diabetic Rats by AMPK/mTOR Autophagy Signaling Pathway[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 543-552. DOI: 10.12290/xhyxzz.2022-0183
    [5]ZHANG Xi, HUANG Bing, WANG Guipeng. Progress of NLRP3 Inflammasome and Myocardial Ischemia Reperfusion Injury[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(2): 296-301. DOI: 10.12290/xhyxzz.2021-0619
    [6]GENG Wen-qi, DUAN Yan-ping, JIANG Jing, LI Tao, ZHANG Ke-rang, ZHU Gang, YU Xin, SHI Li-li, WEI Jing. Effects of Comorbidity of Generalized Anxiety Disorder on Executive Functions of Patients with Major Depressive Disorder: A Multi-center Retrospective Case-control Study[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(2): 221-226. DOI: 10.3969/j.issn.1674-9081.2020.00.020
    [7]WANG Ya-ning, YANG Tian-rui, MA Wen-bin. Postoperative Cognitive Dysfunction in Patients with Brain Tumor[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(1): 99-104. DOI: 10.12290/xhyxzz.20190082
    [8]Noyes' Knee Disorders: Surgery, Rehabilitation, Clinical Outcomes(2nd ed.)(2016)[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(1): 18-18.
    [9]Wei-ling SHOU, Wei WU, Lian-kai FAN, Tian XIE, Wei CUI. Performance Evaluation of Clinical Detection of Coagulation Factors, Protein S, Protein C, Anti-thrombin Ⅲ, and von Willebrand Factor Antigen[J]. Medical Journal of Peking Union Medical College Hospital, 2014, 5(3): 278-282. DOI: 10.3969/j.issn.1674-9081.2014.03.007
    [10]Ying ZHANG, Min SHEN, Jun-ling ZHUANG, Bao LIU, Xue-jun ZENG. Clinical Features of Aortic Aneurysm-associated Chronic Disseminated Intravascular Coagulation[J]. Medical Journal of Peking Union Medical College Hospital, 2013, 4(1): 15-19. DOI: 10.3969/j.issn.1674-9081.2013.01.004
  • Cited by

    Periodical cited type(6)

    1. 钟小芳,李雅,朱虹,孙致远,赵舒扬. 基于政策工具的我国抗肿瘤创新药物政策文件分析. 医药导报. 2024(04): 654-660 .
    2. 王潇,文敏,郑沛,刘秋叶,左亚杰. 土鳖虫化学成分和药理作用的研究进展及其质量标志物(Q-Marker)的预测分析. 环球中医药. 2024(05): 933-940 .
    3. 刘娟,李庆,朱胜钦,薛志勇. 3-甲基-6-氨甲基-喹喔啉-2-甲酸衍生物的合成. 合成化学. 2024(07): 622-626 .
    4. 巫建群,邓晓莉. 95例新型抗肿瘤药物不良反应分析. 海峡药学. 2024(11): 114-117 .
    5. 刘肃,刘颍,朱飞跃. 关于药品定期安全性更新报告审核的一点思考. 药品评价. 2024(10): 1174-1177 .
    6. 李佳新. 抗肿瘤药物的分类及不良影响研究现状. 人人健康. 2023(10): 99-101 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (346) PDF downloads (23) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close