-
摘要:
癌胚抗原相关细胞黏附分子1 (carcinoembryonic antigen-related cell adhesion molecule 1,CEACAM1) 是一种免疫球蛋白超家族的跨膜蛋白,参与介导细胞黏附、组织转移、免疫反应控制以及机体代谢平衡。研究表明, CEACAM1主要通过促进胰岛素清除以防止脂肪沉积, 从而对肝脏发挥保护作用。CEACAM1表达水平下调会导致胰岛素抵抗状态发生恶性循环并加重代谢紊乱。由于CEACAM1在控制代谢功能障碍相关脂肪性肝病(metabolic dysfunction-associated steatotic liver disease, MASLD) 中的关键地位,刺激其作用途径或调节其表达水平有望成为MASLD的治疗新方法。本文就CEACAM1在MASLD中的有关研究进展作一综述。
-
关键词:
- 代谢功能障碍相关脂肪性肝病 /
- 癌胚抗原相关细胞黏附分子1 /
- 胰岛素清除 /
- 脂质代谢
Abstract:Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), a transmembrane protein of the immunoglobulin superfamily, is involved in mediating cell adhesion, tissue metastasis, control of immune response, and metabolic homeostasis. Studies have shown that CEACAM1 protects the liver by promoting insulin clearance and preventing fat deposition. The down-regulation of the CEACAM1 expression level leads to a vicious cycle of insulin resistance and aggravates metabolic disorders. As CEACAM1 is critical in controlling metabolic dysfunction-associated steatotic liver disease (MASLD), stimulating its pathway or regulating its expression level might be a potential new therapeutic approach for MASLD. In this paper, therefore, we summarize the research progress of CEACAM1 in MASLD.
-
诊断学是医学教学中连接基础医学与临床医学的重要桥梁,内容涵盖病史采集、体格检查、实验室检查、心电图、肺功能、超声、放射等影像学检查。超声检查是医学影像学的重要组成部分,可实时、便捷、无创显示人体浅表/深层部位的正常组织、器官以及病变特征,辅助临床决策,在现代医学诊断学中占据非常重要的地位。临床医生掌握超声成像的技术原理、临床适用范围、疾病的超声图像特征将有助于优化临床诊疗流程、提高诊疗效率[1]。将超声与传统诊断学教学相融合,进行组织器官的“可视化解读”,不仅可提高医学生对脏器解剖结构及疾病的理解程度,实现基础医学与临床医学的有效衔接,同时可早期培养医学生运用现代医学影像技术建立新型临床诊疗思维的能力,使其更好地适应辅助诊断技术飞速发展背景下临床诊疗模式的变更[2-4]。
一项针对北京协和医学院临床医学八年制医学生的超声教学现状及需求调研显示,超声教学存在诸多局限性亟需解决,如医学生对超声基础知识及技术发展认识不足、单纯理论教学效果不佳、教学课时少且缺乏临床实践带教课程[5]。为提高超声教学效果,助力培养现代化复合型高层次医学人才教学目标的实施,北京协和医学院诊断学教研室联合超声医学教学团队,针对教学需求,创新性设立诊断学-超声整合课程,其在传统理论教学基础上,对超声教学课程进行了调整并增加以颈部、腹部为代表的可视化超声临床带教课程,实现了诊断学与超声教学的有机结合,达到可视化教学的目的。本研究对该超声可视化教学效果进行评价,以期为进一步优化教学课程设计,建立适合临床推广应用的医学生影像学整合教学模式提供依据。
1. 资料与方法
1.1 研究对象
本研究为便利抽样调查,研究对象为拟参加超声-诊断学整合课程中颈部及腹部超声可视化教学的医学生,包括北京协和医学院2017级临床医学八年制本-博连读博士生及2019级“4+4”试点班博士生。所有学生均已完成超声-诊断学整合课程中的理论课学习。
1.2 研究方法
1.2.1 教学方法
诊断学-超声整合课程的可视化超声教学以小组的方式(每组8~9人)进行,包含颈部及腹部超声2次课程。带教老师均为具有丰富教学经验的副教授或主治医师,采用相同的教案进行备课,保证教学质量及教学同质性。
带教课程在超声诊室内进行,为避免干扰正常的医疗工作,均在非工作时间开展。教学过程:(1) 带教老师在超声仪器旁讲解超声成像的原理及临床应用、超声仪构造及使用方法等。(2)以1名医学生作为标准化患者进行实时超声带教活动,边操作边详细讲解目标脏器的超声检查方法及正常表现,并重点阐明重要解剖结构的超声图像表现。(3)医学生每2人为1个小组进行现场操作练习,带教老师在旁指导,辅助其进行正确操作并显示重要结构的超声图像。(4)基于影像学工作站中的病例,对超声报告进行解读。在上述教学过程中,医学生有疑问均可随时提问,带教老师现场予以及时解答。(5)评价教学效果,并进一步优化课程设计。超声-诊断学整合课程的教学流程见图 1。
1.2.2 问卷调查
分别于超声可视化教学前及教学后通过问卷星发放电子调查问卷,以评估可视化超声教学效果。针对颈部及腹部超声课程的问卷分别由1名带教老师设计,并由熟悉该领域且不参与本研究的老师对问卷的科学性及适用性进行审查。2019级“4+4”试点班博士生的带教时间为2020年12月,颈部超声课程问卷共6道客观题(其中多选题2道),包含15个知识点;腹部超声课程问卷共5道单选题,包含5个知识点。2017级临床医学八年制博士生带教时间为2021年10月,颈部超声课程问卷共包含16个知识点(新增了1道单选题);腹部超声课程问卷同2019级博士生。对同一名医学生教学前后均填写的有效问卷进行分析,以正确率表示教学前后医学生对每个知识点的掌握程度,正确率=回答正确的人数/答题总人数×100%。此外,所有问卷均包含一道主观题,需医学生对课程提出意见与建议。课程结束后附加颈部超声与腹部超声教学课程满意度评价(包括非常满意、满意、基本满意及不满意4个等级)。
1.3 统计学处理
采用Microsoft Excel 2016软件进行问卷数据整理,采用SPSS 20.0软件进行统计学分析。计数资料以频数和/或百分数表示。教学前后知识点掌握正确率的比较采用McNemar检验。以P<0.05为差异具有统计学意义。
2. 结果
2.1 一般资料
参与调查的临床医学八年制医学生共124人,男性54人,女性70人。其中北京协和医学院2017级临床医学八年制博士生107人,2019级“4+4”试点班博士生17人。
教学前后发放颈部超声课程问卷均为124份,同一名医学生教学前后均填写的有效问卷共116份(有效回收率为93.5%)。教学前后发放腹部超声课程问卷均为107份,同一名医学生教学前后均填写的有效问卷共101份(有效回收率为94.4%)。
2.2 颈部超声课程可视化教学前后医学生知识点掌握情况
颈部超声课程教学前,医学生对知识点掌握的正确率为24%~100%,教学后为83%~100%。颈部超声课程教学后,2017级博士生中,68.8%(11/16)知识点掌握的正确率得到明显提高;2019级博士生中,66.7%(10/15)知识点掌握的正确率得到明显提高,差异均有统计学意义(P均<0.05),见表 1。
表 1 颈部超声课程教学前后医学生对知识点掌握正确率比较知识点 教学前正确率(%) 教学后正确率(%) P值 1.超声检查甲状腺结节的适应证:临床触诊甲状腺肿大 94.0 100 0.016 2.超声检查甲状腺结节的适应证:体检发现甲状腺结节并进行结节良恶性鉴别 90.5 98.3 0.004 3.超声检查甲状腺结节的适应证:甲状腺结节随访 94.8 100 0.031 4.超声检查甲状腺结节的适应证:甲状腺癌术后监测 94.0 100 0.016 5.超声检查甲状腺结节的适应证:高危人群甲状腺癌筛查 91.4 98.3 0.008 6.超声检查甲状腺结节的适应证:辅助甲状腺及颈部淋巴结穿刺活检 99.1 100 >0.999 7.超声不能确诊甲状腺功能亢进症 84.5 96.6 0.001 8.超声检查在甲状腺疾病诊疗中的优势:无创 100 100 >0.999 9.超声检查在甲状腺疾病诊疗中的优势:无辐射 100 100 >0.999 10.超声检查在甲状腺疾病诊疗中的优势:便捷、经济 100 100 >0.999 11.超声检查在甲状腺疾病诊疗中的优势:高分辨率、实时成像 84.5 95.7 0.002 12.超声检查在甲状腺疾病诊疗中的优势:诊断准确性高 66.4 96.6 <0.001 13.识别低回声甲状腺结节图像 94.8 94.8 >0.999 14.诊断为甲状腺肿大的超声标准是前后径大于2 cm 40.5 98.3 <0.001 15.正常淋巴结的超声表现为长径与短径比值大于2 57.8 95.7 <0.001 16.颈部中央区淋巴结与侧方淋巴结的超声分界为颈总动脉内侧缘* 24 83 <0.001 *2017级博士生新增知识点 2.3 腹部超声课程可视化教学前后医学生知识点掌握情况
腹部超声课程教学前,医学生对知识点掌握的正确率为65.3%~99.0%,教学后为89.1%~100%。腹部超声课程教学后,80%(4/5)知识点掌握的正确率得到明显提高,差异均有统计学意义(P均<0.05),见表 2。
表 2 腹部超声课程教学前后医学生对知识点掌握正确率比较知识点 教学前正确率(%) 教学后正确率(%) P值 1.肝内门静脉与肝静脉呈非平行分布 66.3 99.0 <0.001 2.肝弥漫性病变便捷、实用的影像学检查方法是超声成像 99.0 100 >0.999 3.门静脉的血流方向为入肝血流 86.1 97.0 0.007 4.如果同时有钡餐与超声检查,应该先进行超声检查 72.3 96.0 <0.001 5.随年龄增加,超声检查可见人体胰腺回声增强 65.3 89.1 <0.001 2.4 医学生对超声可视化教学的反馈
超声可视化教学得到了学生广泛认可,课程满意度调查显示,99.1%(115/116)的医学生对颈部超声课程“非常满意”或“满意”,仅0.9%(1/116)对该课程“基本满意”,无“不满意”医学生;99.0%(100/101)的医学生对腹部超声课程“非常满意”或“满意”,仅1.0%(1/101)对该课程“基本满意”,无“不满意”医学生。
21人对课程作出了积极中肯的评价,根据反馈,课程具有以下优点:(1)形象生动,能提高学习主观能动性:学生亲身体验,过程直观有趣,促进了学生积极地参与课程,课堂气氛活跃(52%,11/21);(2)提高了学习效率:有助于医学生对超声成像的理解与解剖结构的学习,结合带教老师的讲解,学习效率显著提高(43%,9/21);(3)激发学习兴趣:在亲身体验及相互检查过程中,感受到超声医学及人体结构的奇妙,提高了医学生对超声医学及临床诊断学的学习兴趣(5%,1/21)。
27人对教学课程提出了建议:(1) 增加课时(56%,15/27),以增强医学生对人体其他器官/系统超声表现的了解;(2)推荐学习资料(26%,7/27),以便在课程前对解剖知识进行温习;(3)增加疾病超声表现的讲解(7%,2/27),以便医学生更好地将超声学与诊断学相结合;(4)缩短老师带教与理论授课的间隔时间(4%,1/27),以提高学习效率;(5)增加模拟教学的机会(4%,1/27),以加深医学生对知识点的掌握;(6)增加超声科见习的时间(4%,1/27),以便医学生更多地参与超声科实际工作,理论联系实践。
3. 讨论
超声成像为人体脏器的可视化提供了便捷方法,且具有无创、可床旁、动态监测等优势,临床应用十分广泛,非常适合于教学过程中的示教演示及实践操作带教。超声可视化教学在住院医师产科教学查房、麻醉、临床基本技能教学中已取得了良好效果[6-9]。既往研究显示,整合课程的开展有助于加强医学生学科间知识的融合[10-11]。本研究将“超声可视化解读”融入诊断学教学,通过对医学生“视-触-叩-听”中“所见-所及-所感-所闻”的物理现象进行实时超声可视化解读教学,辅助医学生对物理查体知识点的理解和掌握,打破了学科式教学的界限,实现了影像学对传统诊断学教学效果的协同作用。参照临床医学八年制医学生的诊断学大纲,同时考虑操作便捷性、被检查者的个人隐私等因素,选择了颈部及腹部模块开展可视化教学探索。本研究结果显示,颈部及腹部超声课程教学后,2017级博士生和2019级博士生分别对相应知识点回答的正确率明显提高。其余知识点正确率未见明显增高的原因为医学生于教学前对这些知识点掌握已较准确。课程满意度调查显示,医学生对颈部及腹部超声课程“非常满意”或“满意”率均达到了99%,提示该直观的教学方式,可促进医学生对知识点的掌握,为医学生基础医学课程向临床医学课程的顺利过渡提供了桥梁,在临床医学八年制医学生中取得了良好的教学效果和较高的教学满意度。
根据医学生的教学反馈,超声可视化教学不仅提高了医学生的学习主观能动性及学习效率,且可激发其学习兴趣。为进一步提高教学效果,27名医学生对该教学设计提出了建议:56%的医学生认为应增加课时,26%的医学生建议推荐学习资料,为课程的优化提供了重要依据。未来可适当延长超声可视化课程的学时,增加子宫、乳腺等器官的可视化相关课程,促进医学生对人体全身重要脏器超声特征的了解,助力其综合能力的培养;教学前推荐学习资料,以方便医学生进行相关知识点的学习并提高自主学习能力。
本研究局限性:评价指标相对单一,且为保证教育公平性,未设立对照组,仅采取自身对照的方式进行了教学效果评价。未来可考虑围绕教学知识点对本年度参加可视化教学与未参加该课程的医学生进行多维度考核,以进一步评价该教学模式的优势及可能存在的不足。
超声作为临床辅助诊断过程中最重要的影像学检查之一,将其与诊断学相整合、设立诊断学-超声整合课程,有助于加深医学生对相关知识的理解,早期培养临床诊疗思维。本研究以器官/系统为中心,对诊断学-超声整合课程中超声可视化教学的效果进行了初步评价,发现该教学模式可提高临床医学八年制医学生学习主动性及学习效率、激发学习兴趣,明显提高教学效果。
-
图 1 CEACAM1在MASLD发生发展中的作用机制
MASLD(metabolic dysfunction-associated steatotic liver disease): 代谢功能障碍相关脂肪性肝病;MASH(metabolic dysfunction-associated steatohepatitis): 代谢功能障碍相关脂肪性肝炎;FFAs(free fatty acids): 游离脂肪酸;TG(triglyceride): 甘油三酯;VLDL(very low-density lipoprotein): 极低密度脂蛋白;ET-1(endothelin-1): 内皮素-1;PDGF-B(platelet derived growth factor-B): 血小板源性生长因子B;IR(insulin resistance): 胰岛素抵抗;TNF-α(tumor necrosis factor-α): 肿瘤坏死因子α;IL(interleukin): 白细胞介素;IFN-γ(interferon-γ): 干扰素-γ;HFD(high fat die): 高脂饮食;Obese: 肥胖;Fat: 脂肪;FASN(fatty acid synthase): 脂肪酸合成酶;FGF21(fibroblast growth factor 21): 成纤维细胞生长因子21;CEACAM1(carcinoembryonic antigen-related cell adhesion molecule 1): 癌胚抗原相关细胞黏附分子1;Insulin level: 胰岛素水平;IRS-1(insulin receptor substrate 1): 胰岛素受体底物-1;T-cell: T细胞;Intestinal flora: 肠道菌群;PPAR(peroxisome-proliferator-activated receptor): 过氧化物酶体增殖物激活受体;Exenatide: 艾塞那肽
Figure 1. Mechanism of CEACAM1 in the occurrence and development of MASLD
-
[1] Younossi Z M, Golabi P, Paik J M, et al. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review[J]. Hepatology, 2023, 77(4): 1335-1347. DOI: 10.1097/HEP.0000000000000004
[2] Loomba R, Wong V W S. Implications of the new nomenclature of steatotic liver disease and definition of metabolic dysfunction-associated steatotic liver disease[J]. Aliment Pharmacol Ther, 2024, 59(2): 150-156. DOI: 10.1111/apt.17846
[3] Harrison S A, Dubourg J, Knott M, et al. Hyperinsuline-mia, an overlooked clue and potential way forward in metabolic dysfunction-associated steatotic liver disease[J/OL]. Hepatology, 2023. doi: 10.1097/hep.0000000000000710.
[4] Yanai H, Adachi H, Hakoshima M, et al. Metabolic- dysfunction-associated steatotic liver disease-its pathophysiology, association with atherosclerosis and cardiovascular disease, and treatments[J]. Int J Mol Sci, 2023, 24(20): 15473. DOI: 10.3390/ijms242015473
[5] Kube-Golovin I, Lyndin M, Wiesehöfer M, et al. CEACAM expression in an in-vitro prostatitis model[J]. Front Immunol, 2023, 14: 1236343. DOI: 10.3389/fimmu.2023.1236343
[6] Thomas J, Klebanov A, John S, et al. CEACAMS 1, 5, and 6 in disease and cancer: interactions with pathogens[J]. Genes Cancer, 2023, 14: 12-29. DOI: 10.18632/genesandcancer.230
[7] Lee W. The CEACAM1 expression is decreased in the liver of severely obese patients with or without diabetes[J]. Diagn Pathol, 2011, 6(1): 40. DOI: 10.1186/1746-1596-6-40
[8] Heinrich G, Ghadieh H E, Ghanem S S, et al. Loss of hepatic CEACAM1: a unifying mechanism linking insulin resistance to obesity and non-alcoholic fatty liver disease[J]. Front Endocrinol (Lausanne), 2017, 8: 8.
[9] Lee W H, Najjar S M, Kahn C R, et al. Hepatic insulin receptor: new views on the mechanisms of liver disease[J]. Metabolism, 2023, 145: 155607. DOI: 10.1016/j.metabol.2023.155607
[10] Russo L, Muturi H T, Ghadieh H E, et al. Liver-specific rescuing of CEACAM1 reverses endothelial and cardi-ovascular abnormalities in male mice with null deletion of Ceacam1 gene[J]. Mol Metab, 2018, 9: 98-113. DOI: 10.1016/j.molmet.2018.01.009
[11] Hajihassan Z, Mohammadpour Saray M, Yaseri A. Engineering a CEACAM1 variant with the increased binding affinity to TIM-3 receptor[J]. Iran Biomed J, 2023, 27(4): 191-198.
[12] Dery K J, Kojima H, Kageyama S, et al. Alternative splicing of CEACAM1 by hypoxia-inducible factor-1α enhances tolerance to hepatic ischemia in mice and humans[J]. Sci Transl Med, 2023, 15(707): eadf2059. DOI: 10.1126/scitranslmed.adf2059
[13] 刘传, 李丽娟, 王嵘, 等. CEACAM5在肺腺癌中的表达及临床意义[J]. 临床肺科杂志, 2022, 27(2): 256-261. DOI: 10.3969/j.issn.1009-6663.2022.02.020 Liu C, Li L J, Wang R, et al. Expression and clinical significance of CEACAM5 in lung adenocarcinoma[J]. J Clin Pulm Med, 2022, 27(2): 256-261. DOI: 10.3969/j.issn.1009-6663.2022.02.020
[14] 马凯, 王鸽, 孙建兵, 等. HopQ与人CEACAM1相互作用的研究进展[J]. 医学综述, 2019, 25(17): 3433-3437. DOI: 10.3969/j.issn.1006-2084.2019.17.020 Ma K, Wang G, Sun J B, et al. Research progress of HopQ interaction with human CEACAM1[J]. Med Recapitulate, 2019, 25(17): 3433-3437. DOI: 10.3969/j.issn.1006-2084.2019.17.020
[15] Fan Y J, Yan Z P, Li T T, et al. Primordial drivers of diabetes heart disease: comprehensive insights into insulin resistance[J]. Diabetes Metab J, 2024, 48(1): 19-36. DOI: 10.4093/dmj.2023.0110
[16] Schwärzler J, Grabherr F, Grander C, et al. The pathophysiology of MASLD: an immunometabolic perspective[J]. Expert Rev Clin Immunol, 2024, 20(4): 375-386. DOI: 10.1080/1744666X.2023.2294046
[17] Vesković M, Šutulović N, Hrnčić D, et al. The interconnection between hepatic insulin resistance and metabolic dysfunction-associated steatotic liver disease-the transition from an adipocentric to liver-centric approach[J]. Curr Issues Mol Biol, 2023, 45(11): 9084-9102. DOI: 10.3390/cimb45110570
[18] Margolis R N, Taylor S I, Seminara D, et al. Identification of pp120, an endogenous substrate for the hepatocyte insulin receptor tyrosine kinase, as an integral membrane glycoprotein of the bile canalicular domain[J]. Proc Natl Acad Sci U S A, 1988, 85(19): 7256-7259. DOI: 10.1073/pnas.85.19.7256
[19] Najjar S M. Regulation of insulin action by CEACAM1[J]. Trends Endocrinol Metab, 2002, 13(6): 240-245. DOI: 10.1016/S1043-2760(02)00608-2
[20] Choice C V, Howard M J, Poy M N, et al. Insulin stimulates pp120 endocytosis in cells co-expressing insulin receptors[J]. J Biol Chem, 1998, 273(35): 22194-22200. DOI: 10.1074/jbc.273.35.22194
[21] Bergman R N, Kabir M, Ader M. The physiology of insulin clearance[J]. Int J Mol Sci, 2022, 23(3): 1826. DOI: 10.3390/ijms23031826
[22] Bril F, Lomonaco R, Orsak B, et al. Relationship between disease severity, hyperinsulinemia, and impaired insulin clearance in patients with nonalcoholic steatohepatitis[J]. Hepatology, 2014, 59(6): 2178-2187. DOI: 10.1002/hep.26988
[23] De Vries M, El-Morabit F, Van Erpecum K J, et al. Non-alcoholic fatty liver disease: identical etiologic factors in patients with type 1 and type 2 diabetes[J]. Eur J Intern Med, 2022, 100: 77-82. DOI: 10.1016/j.ejim.2022.03.025
[24] De Vries M, Westerink J, Kaasjager K H A H, et al. Prevalence of nonalcoholic fatty liver disease (NAFLD) in patients with type 1 diabetes mellitus: a systematic review and meta-analysis[J]. J Clin Endocrinol Metab, 2020, 105(12): 3842-3853. DOI: 10.1210/clinem/dgaa575
[25] Poy M N, Ruch R J, Fernstrom M A, et al. Shc and CEACAM1 interact to regulate the mitogenic action of insulin[J]. J Biol Chem, 2002, 277(2): 1076-1084. DOI: 10.1074/jbc.M108415200
[26] Yousef A A, Behiry E G, Allah W M A, et al. IRS-1 genetic polymorphism (r.2963G > A) in type 2 diabetes mellitus patients associated with insulin resistance[J]. Appl Clin Genet, 2018, 11: 99-106. DOI: 10.2147/TACG.S171096
[27] Poy M N, Yang Y, Rezaei K, et al. CEACAM1 regulates insulin clearance in liver[J]. Nat Genet, 2002, 30(3): 270-276. DOI: 10.1038/ng840
[28] Nagaishi T, Pao L, Lin S H, et al. SHP1 phosphatase-dependent T cell inhibition by CEACAM1 adhesion molecule isoforms[J]. Immunity, 2006, 25(5): 769-781. DOI: 10.1016/j.immuni.2006.08.026
[29] Mahmoud A M, Szczurek M R, Blackburn B K, et al. Hyperinsulinemia augments endothelin-1 protein expression and impairs vasodilation of human skeletal muscle arterioles[J]. Physiol Rep, 2016, 4(16): e12895. DOI: 10.14814/phy2.12895
[30] Abu Helal R, Muturi H T, Lee A D, et al. Aortic fibrosis in insulin-sensitive mice with endothelial cell-specific deletion of Ceacam1 gene[J]. Int J Mol Sci, 2022, 23(8): 4335. DOI: 10.3390/ijms23084335
[31] Muturi H T, Ghadieh H E, Abdolahipour R, et al. Loss of CEACAM1 in endothelial cells causes hepatic fibrosis[J]. Metabolism, 2023, 144: 155562. DOI: 10.1016/j.metabol.2023.155562
[32] Helal R A, Russo L, Ghadieh H E, et al. Regulation of hepatic fibrosis by carcinoembryonic antigen-related cell adhesion molecule 1[J]. Metabolism, 2021, 121: 154801. DOI: 10.1016/j.metabol.2021.154801
[33] Yan M L, Li H, Xu S Y, et al. Targeting endothelial necroptosis disrupts profibrotic endothelial-hepatic stellate cells crosstalk to alleviate liver fibrosis in nonalcoholic steatohepatitis[J]. Int J Mol Sci, 2023, 24(14): 11313. DOI: 10.3390/ijms241411313
[34] Laurenti M C, Dalla Man C, Varghese R T, et al. Insulin pulse characteristics and insulin action in non-diabetic humans[J]. J Clin Endocrinol Metab, 2021, 106(6): 1702-1709. DOI: 10.1210/clinem/dgab100
[35] DeBose-Boyd R A, Ye J. SREBPs in lipid metabolism, insulin signaling, and beyond[J]. Trends Biochem Sci, 2018, 43(5): 358-368. DOI: 10.1016/j.tibs.2018.01.005
[36] Matveyenko A V, Liuwantara D, Gurlo T, et al. Pulsatile portal vein insulin delivery enhances hepatic insulin action and signaling[J]. Diabetes, 2012, 61(9): 2269-2279. DOI: 10.2337/db11-1462
[37] Ramakrishnan S K, Khuder S S, Al-Share Q Y, et al. PPARα (peroxisome proliferator-activated receptor α) activation reduces hepatic CEACAM1 protein expression to regulate fatty acid oxidation during fasting-refeeding transition[J]. J Biol Chem, 2016, 291(15): 8121-8129. DOI: 10.1074/jbc.M116.714014
[38] Najjar S M, Caprio S, Gastaldelli A. Insulin clearance in health and disease[J]. Annu Rev Physiol, 2023, 85: 363-381. DOI: 10.1146/annurev-physiol-031622-043133
[39] Barreby E, Chen P, Aouadi M. Macrophage functional diversity in NAFLD-more than inflammation[J]. Nat Rev Endocrinol, 2022, 18(8): 461-472. DOI: 10.1038/s41574-022-00675-6
[40] Ruck L, Wiegand S, Kühnen P. Relevance and consequence of chronic inflammation for obesity development[J]. Mol Cell Pediatr, 2023, 10(1): 16. DOI: 10.1186/s40348-023-00170-6
[41] Hayakawa F, Soga K, Fujino J, et al. Utility of ultrasonography in a mouse model of non-alcoholic steatohepatitis induced by a choline-deficient, high-fat diet and dextran sulfate sodium[J]. Biochem Biophys Rep, 2023, 36: 101575.
[42] Kakino S, Ohki T, Nakayama H, et al. Pivotal role of TNF-α in the development and progression of nonalcoholic fatty liver disease in a murine model[J]. Horm Metab Res, 2018, 50(1): 80-87. DOI: 10.1055/s-0043-118666
[43] DeAngelis A M, Heinrich G, Dai T, et al. Carcinoembry-onic antigen-related cell adhesion molecule 1: a link between insulin and lipid metabolism[J]. Diabetes, 2008, 57(9): 2296-2303. DOI: 10.2337/db08-0379
[44] Park S Y, Cho Y R, Kim H J, et al. Mechanism of glucose intolerance in mice with dominant negative mutation of CEACAM1[J]. Am J Physiol Endocrinol Metab, 2006, 291(3): E517-E524.
[45] Al-Share Q Y, DeAngelis A M, Lester S G, et al. Forced hepatic overexpression of CEACAM1 curtails Diet-Induced insulin resistance[J]. Diabetes, 2015, 64(8): 2780-2790. DOI: 10.2337/db14-1772
[46] Wang Z Y, Sun T T, Yu J J, et al. FGF21: a sharp weapon in the process of exercise to improve NAFLD[J]. Front Biosci (Landmark Ed), 2023, 28(12): 351. DOI: 10.31083/j.fbl2812351
[47] Bakker L E H, Van Schinkel L D, Guigas B, et al. A 5-day high-fat, high-calorie diet impairs insulin sensitivity in healthy, young South Asian men but not in Caucasian men[J]. Diabetes, 2014, 63(1): 248-258. DOI: 10.2337/db13-0696
[48] Pezzino S, Sofia M, Mazzone C, et al. Exploring public interest in gut microbiome dysbiosis, NAFLD, and probiotics using Google Trends[J]. Sci Rep, 2024, 14(1): 799. DOI: 10.1038/s41598-023-50190-5
[49] Park D J, Sung P S, Kim J H, et al. EpCAM-high liver cancer stem cells resist natural killer cell-mediated cytotoxicity by upregulating CEACAM1[J]. J Immunother Cancer, 2020, 8(1): e000301. DOI: 10.1136/jitc-2019-000301
[50] Khairnar V, Duhan V, Patil A M, et al. CEACAM1 promotes CD8+ T cell responses and improves control of a chronic viral infection[J]. Nat Commun, 2018, 9(1): 2561. DOI: 10.1038/s41467-018-04832-2
[51] Adams D H, Eksteen B. Aberrant homing of mucosal T cells and extra-intestinal manifestations of inflammatory bowel disease[J]. Nat Rev Immunol, 2006, 6(3): 244-251. DOI: 10.1038/nri1784
[52] He R H, Zhao S B, Cui M Y, et al. Cutaneous manifestations of inflammatory bowel disease: basic characteristics, therapy, and potential pathophysiological associations[J]. Front Immunol, 2023, 14: 1234535. DOI: 10.3389/fimmu.2023.1234535
[53] Horst A K, Wegscheid C, Schaefers C, et al. Carcinoembryonic antigen-related cell adhesion molecule 1 controls IL-2-dependent regulatory T-cell induction in immune-mediated hepatitis in mice[J]. Hepatology, 2018, 68(1): 200-214. DOI: 10.1002/hep.29812
[54] Vallianou N, Christodoulatos G S, Karampela I, et al. Understanding the role of the gut microbiome and microbial metabolites in non-alcoholic fatty liver disease: current evidence and perspectives[J]. Biomolecules, 2021, 12(1): 56. DOI: 10.3390/biom12010056
[55] Chen L F, Chen Z G, Baker K, et al. The short isoform of the CEACAM1 receptor in intestinal T cells regulates mucosal immunity and homeostasis via Tfh cell induction[J]. Immunity, 2012, 37(5): 930-946. DOI: 10.1016/j.immuni.2012.07.016
[56] Gruzdev S K, Podoprigora I V, Gizinger O A. Immunology of gut microbiome and liver in non-alcoholic fatty liver disease (NAFLD): mechanisms, bacteria, and novel therapeutic targets[J]. Arch Microbiol, 2024, 206(2): 62. DOI: 10.1007/s00203-023-03752-0
[57] Najjar S M, Perdomo G. Hepatic insulin clearance: mechanism and physiology[J]. Physiology (Bethesda), 2019, 34(3): 198-215.
[58] Salehi M, Aulinger B, Prigeon R L, et al. Effect of endogenous GLP-1 on insulin secretion in type 2 diabetes[J]. Diabetes, 2010, 59(6): 1330-1337. DOI: 10.2337/db09-1253
[59] Ghadieh H E, Muturi H T, Russo L, et al. Exenatide induces carcinoembryonic antigen-related cell adhesion molecule 1 expression to prevent hepatic steatosis[J]. Hepatol Commun, 2018, 2(1): 35-47. DOI: 10.1002/hep4.1117
[60] Ghadieh H E, Muturi H T, Najjar S M. Exenatide prevents diet-induced hepatocellular injury in a CEACAM1-dependent mechanism[J]. J Diabetes Treat, 2017, 2017(4): JDBT-133.