QI Xin, ZHANG Xiaogang, YU Haiyang, CHEN Xin, AN Wenbo, WANG Zhipeng, WANG Duoxian, LUO Pengfei, CHEN Yixin, MA Jiaojiao, QI Wei, HU Ziyang, LIU Jianjun. Research Progress on the Role of HMGB1 in Regulating the Function of Osteoarthritis Chondrocytes[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 141-146. DOI: 10.12290/xhyxzz.2023-0269
Citation: QI Xin, ZHANG Xiaogang, YU Haiyang, CHEN Xin, AN Wenbo, WANG Zhipeng, WANG Duoxian, LUO Pengfei, CHEN Yixin, MA Jiaojiao, QI Wei, HU Ziyang, LIU Jianjun. Research Progress on the Role of HMGB1 in Regulating the Function of Osteoarthritis Chondrocytes[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 141-146. DOI: 10.12290/xhyxzz.2023-0269

Research Progress on the Role of HMGB1 in Regulating the Function of Osteoarthritis Chondrocytes

Funds: 

Zhang Xiaogang National Famous Traditional Chinese Medicine Expert Inheritance Studio Construction Project National Traditional Chinese Medicine Human Education Letter[2022] No. 75

2021 Health Industry Scientific research project GSWSKY-2021-069

Gansu University of Traditional Chinese Medicine Graduate Student Innovation and Entre-preneurship Project 

More Information
  • Corresponding author:

    LIU Jianjun, E-mail: g.sljj@163.com

  • Received Date: June 04, 2023
  • Accepted Date: August 10, 2023
  • Available Online: November 19, 2023
  • Issue Publish Date: January 29, 2024
  • Osteoarthritis (OA) is a chronic degenerative joint disease whose main characteristic is the destruction of articular cartilage, causing pain and disability in patients and seriously affecting their quality of life. OA can be induced by a variety of causes, and pathological changes in articular cartilage are considered to be one of the key driving factors for the occurrence of OA. High mobility group box-1 protein (HMGB1), as a non-histone protein in eukaryotic cells, can participate in regulating the inflammation and apoptosis process of OA chondrocytes, thus leading to the occurrence of OA. This article reviews the research on the mechanism of HMGB1 in OA chondrocytes, with a view to providing new ideas for the clinical prevention and treatment of OA.
  • [1]
    褚云峰, 于红燕, 杨琪, 等. 白藜芦醇在骨关节炎中的作用及机制研究进展[J]. 中国骨质疏松杂志, 2022, 28(9): 1351-1355. DOI: 10.3969/j.issn.1006-7108.2022.09.019

    Chu Y F, Yu H Y, Yang Q, et al. Research progress on the role and mechanism of resveratrol in osteoarthritis[J]. Chin J Osteoporos, 2022, 28(9): 1351-1355. DOI: 10.3969/j.issn.1006-7108.2022.09.019
    [2]
    Lubbers R, Van Schaarenburg R A, Kwekkeboom J C, et al. Complement component C1q is produced by isolated articular chondrocytes[J]. Osteoarthritis Cartilage, 2020, 28(5): 675-684. DOI: 10.1016/j.joca.2019.09.007
    [3]
    Liu Z L, Zhang H, Wang H L, et al. Magnolol alleviates IL-1β-induced dysfunction of chondrocytes through repression of SIRT1/AMPK/PGC-1α signaling pathway[J]. J Interferon Cytokine Res, 2020, 40(3): 145-151. DOI: 10.1089/jir.2019.0139
    [4]
    杨昊. Navitoclax (ABT263) 改善骨关节炎中炎症微环境和减轻软骨破坏的研究[D]. 重庆: 中国人民解放军陆军军医大学, 2020.

    Yang H. The study of Navitoclax (ABT263) improves inflammatory microenvironment in osteoarthritis and attenuates cartilage destruction[D]. Chongqing: Army Medical University, 2020.
    [5]
    Colavita L, Ciprandi G, Salpietro A, et al. HMGB1: a pleiotropic activity[J]. Pediatr Allergy Immunol, 2020, 31(Suppl 26): 63-65.
    [6]
    Chen R C, Kang R, Tang D L. The mechanism of HMGB1 secretion and release[J]. Exp Mol Med, 2022, 54(2): 91-102. DOI: 10.1038/s12276-022-00736-w
    [7]
    Dong Y J, Ming B X, Dong L L. The role of HMGB1 in rheumatic diseases[J]. Front Immunol, 2022, 13: 815257. DOI: 10.3389/fimmu.2022.815257
    [8]
    王晓艳, 杜虹. 高迁移率族蛋白B1在脓毒症和创伤后炎症反应中的作用[J]. 微生物学免疫学进展, 2020, 48(3): 79-83.

    Wang X Y, Du H. The role of high mobility group box-1 protein in inflammation caused by sepsis and trauma[J]. Prog Microbiol Immunol, 2020, 48(3): 79-83.
    [9]
    Xue J M, Suarez J S, Minaai M, et al. HMGB1 as a therapeutic target in disease[J]. J Cell Physiol, 2021, 236(5): 3406-3419. DOI: 10.1002/jcp.30125
    [10]
    Motta F, Barone E, Sica A, et al. Inflammaging and osteoarthritis[J]. Clin Rev Allergy Immunol, 2023, 64(2): 222-238.
    [11]
    Ma W L, Wang X H, Wang C H, et al. Up-regulation of P21-activated kinase 1 in osteoarthritis chondrocytes is responsible for osteoarthritic cartilage destruction[J]. Biosci Rep, 2020, 40(1): BSR20191017. DOI: 10.1042/BSR20191017
    [12]
    唐丹, 王先斌, 杨香莲, 等. 跑台运动训练对脊髓损伤后大鼠肺损伤及HMGB1/TLR4/NF-κB信号通路表达的影响[J]. 中国康复医学杂志, 2023, 38(2): 159-166. DOI: 10.3969/j.issn.1001-1242.2023.02.004

    Tang D, Wang X B, Yang X L, et al. Effects of treadmill training on lung injury and HMGB1/TLR-4/NF-κB signaling pathway after spinal cord injury in rats[J]. Chin J Rehabil Med, 2023, 38(2): 159-166. DOI: 10.3969/j.issn.1001-1242.2023.02.004
    [13]
    Zhang C, Yu W Z, Huang C B, et al. Chrysin protects human osteoarthritis chondrocytes by inhibiting inflammatory mediator expression via HMGB1 suppression[J]. Mol Med Rep, 2019, 19(2): 1222-1229.
    [14]
    Wang Y J, Shen S P, Li Z, et al. MiR-140-5p affects chondrocyte proliferation, apoptosis, and inflammation by targeting HMGB1 in osteoarthritis[J]. Inflamm Res, 2020, 69(1): 63-73. DOI: 10.1007/s00011-019-01294-0
    [15]
    Li W Z, Ni J D, Song D Y, et al. Dual regulatory roles of HMGB1 in inflammatory reaction of chondrocyte cells and mice[J]. Cell Cycle, 2019, 18(18): 2268-2280. DOI: 10.1080/15384101.2019.1642680
    [16]
    Yang H, Wang H C, Andersson U. Targeting inflammation driven by HMGB1[J]. Front Immunol, 2020, 11: 484. DOI: 10.3389/fimmu.2020.00484
    [17]
    Jimi E, Fei H, Nakatomi C. NF-κB signaling regulates physiological and pathological chondrogenesis[J]. Int J Mol Sci, 2019, 20(24): 6275. DOI: 10.3390/ijms20246275
    [18]
    Zhong H H, Li X L, Zhou S N, et al. Interplay between RAGE and TLR4 regulates HMGB1-induced inflammation by promoting cell surface expression of RAGE and TLR4[J]. J Immunol, 2020, 205(3): 767-775. DOI: 10.4049/jimmunol.1900860
    [19]
    Meng Y, Qiu S Q, Sun L, et al. Knockdown of exosome-mediated lnc-PVT1 alleviates lipopolysaccharide-induced osteoarthritis progression by mediating the HMGB1/TLR4/NF-κB pathway via miR-93-5p[J]. Mol Med Rep, 2020, 22(6): 5313-5325. DOI: 10.3892/mmr.2020.11594
    [20]
    Hu S L, Wang K, Shi Y F, et al. Downregulating Akt/NF-κB signaling and its antioxidant activity with Loureirin A for alleviating the progression of osteoarthritis: in vitro and vivo studies[J]. Int Immunopharmacol, 2020, 78: 105953. DOI: 10.1016/j.intimp.2019.105953
    [21]
    Hu Z H, Xiao M, Cai H X, et al. Glycyrrhizin regulates rat TMJOA progression by inhibiting the HMGB1-RAGE/TLR4-NF-κB/AKT pathway[J]. J Cell Mol Med, 2022, 26(3): 925-936. DOI: 10.1111/jcmm.17149
    [22]
    Romerio A, Peri F. Increasing the chemical variety of small-molecule-based TLR4 modulators: an overview[J]. Front Immunol, 2020, 11: 1210. DOI: 10.3389/fimmu.2020.01210
    [23]
    Li C Z, He Y H, Li Y L, et al. A novel method to establish the rabbit model of knee osteoarthritis: intra-articular injection of SDF-1 induces OA[J]. BMC Musculoskelet Disord, 2021, 22(1): 329. DOI: 10.1186/s12891-021-04188-7
    [24]
    Xiang Y Y, Li Y L, Yang L J, et al. MiR-142-5p as a CXCR4-targeted microRNA attenuates SDF-1-induced chondrocyte apoptosis and cartilage degradation via inactivating MAPK signaling pathway[J]. Biochem Res Int, 2020, 2020: 4508108.
    [25]
    Liang S, Lv Z T, Zhang J M, et al. Necrostatin-1 attenuates trauma-induced mouse osteoarthritis and IL-1β induced apoptosis via HMGB1/TLR4/SDF-1 in primary mouse chondrocytes[J]. Front Pharmacol, 2018, 9: 1378. DOI: 10.3389/fphar.2018.01378
    [26]
    Zhang J L, Cheng F Y, Rong G X, et al. Hsa_circ_0005567 activates autophagy and suppresses IL-1β-induced chondrocyte apoptosis by regulating miR-495[J]. Front Mol Biosci, 2020, 7: 216. DOI: 10.3389/fmolb.2020.00216
    [27]
    Gao Y J, Zhao H Y, Li Y. LncRNA MCM3AP-AS1 regulates miR-142-3p/HMGB1 to promote LPS-induced chondrocyte apoptosis[J]. BMC Musculoskelet Disord, 2019, 20(1): 605. DOI: 10.1186/s12891-019-2967-4
    [28]
    Qiu M, Liu D, Fu Q. MiR-129-5p shuttled by human synovial mesenchymal stem cell-derived exosomes relieves IL-1β induced osteoarthritis via targeting HMGB1[J]. Life Sci, 2021, 269: 118987. DOI: 10.1016/j.lfs.2020.118987
    [29]
    Pan H, Dai H M, Wang L Z, et al. MicroRNA-410-3p modulates chondrocyte apoptosis and inflammation by targeting high mobility group box 1 (HMGB1) in an osteoarthritis mouse model[J]. BMC Musculoskelet Disord, 2020, 21(1): 486. DOI: 10.1186/s12891-020-03489-7
    [30]
    Lin J T, Song T, Li C, et al. GSK-3β in DNA repair, apoptosis, and resistance of chemotherapy, radiotherapy of cancer[J]. Biochim Biophys Acta Mol Cell Res, 2020, 1867(5): 118659. DOI: 10.1016/j.bbamcr.2020.118659
    [31]
    Yuan X L, Li L F, Shi W M, et al. TMF protects chondrocytes from ER stress-induced apoptosis by down-regulating GSK-3β[J]. Biomed Pharmacother, 2017, 89: 1262-1268. DOI: 10.1016/j.biopha.2017.03.028
    [32]
    Ba C, Ni X H, Yu J L, et al. Ubiquitin conjugating enzyme E2 M promotes apoptosis in osteoarthritis chondrocytes via Wnt/β-catenin signaling[J]. Biochem Biophys Res Commun, 2020, 529(4): 970-976. DOI: 10.1016/j.bbrc.2020.06.095
    [33]
    Sun Y, Wang F F, Sun X H, et al. CX3CR1 regulates osteoarthrosis chondrocyte proliferation and apoptosis via Wnt/β-catenin signaling[J]. Biomed Pharmacother, 2017, 96: 1317-1323. DOI: 10.1016/j.biopha.2017.11.080
    [34]
    Shu Z Y, Miao X G, Tang T, et al. The GSK-3β/β-catenin signaling pathway is involved in HMGB1-induced chondro-cyte apoptosis and cartilage matrix degradation[J]. Int J Mol Med, 2020, 45(3): 769-778.
    [35]
    廖建青, 马富文, 张英杰, 等. 骨痹合剂对膝关节骨性关节炎原代软骨细胞PI3K/AKT信号通路的影响[J]. 中华中医药杂志, 2022, 37(4): 2322-2326.

    Liao J Q, Ma F W, Zhang Y J, et al. Effects of Gubi mixture on PI3K/AKT signaling pathway of KOA primary chondrocytes[J]. China J Tradit Chin Med Pharm, 2022, 37(4): 2322-2326.
    [36]
    Shi X Q, Jie L S, Wu P, et al. Calycosin mitigates chondrocyte inflammation and apoptosis by inhibiting the PI3K/AKT and NF-κB pathways[J]. J Ethnopharmacol, 2022, 297: 115536. DOI: 10.1016/j.jep.2022.115536
    [37]
    Li D, Ni S, Miao K S, et al. PI3K/Akt and caspase pathways mediate oxidative stress-induced chondrocyte apoptosis[J]. Cell Stress Chaperones, 2019, 24(1): 195-202. DOI: 10.1007/s12192-018-0956-4
    [38]
    习洋. 生长分化因子-11 (GDF11) 通过抑制MAPK和PI3K-AKT/NF-κB通路发挥抗骨关节炎作用的体内外研究[D]. 武汉: 华中科技大学, 2020.

    Xi Y. GDF11 exerts anti-osteoarthritic effects through MAPK and PI3K-AKT/NF-κB pathway in vitro and vivo studies[D]. Wuhan: Huazhong University of Science and Technology, 2020.
    [39]
    Bigeard J, Hirt H. Nuclear signaling of plant MAPKs[J]. Front Plant Sci, 2018, 9: 469. DOI: 10.3389/fpls.2018.00469
    [40]
    张传成, 沈美花, 陈利锋. 氧化应激调控MAPK信号通路与骨关节炎治疗研究进展[J]. 中国骨质疏松杂志, 2023, 29(4): 583-588.

    Zhang C C, Shen M H, Chen L F. Research progress of oxidative stress regulating MAPK signal pathway and treatment of osteoarthritis[J]. Chin J Osteoporos, 2023, 29(4): 583-588.
    [41]
    傅永升, 谭茗月, 王卫国, 等. 中药调控膝骨关节炎相关信号通路的研究进展[J]. 中国实验方剂学杂志, 2023, 29(22): 231-243.

    Fu Y S, Tan M Y, Wang W G, et al. Chinese medicine regulates knee osteoarthritis-related signaling pathways: a review[J]. Chin J Exp Tradit Med Form, 2023, 29(22): 231-243.
    [42]
    Zhou Y, Ming J H, Li Y M, et al. Ligustilide attenuates nitric oxide-induced apoptosis in rat chondrocytes and cartilage degradation via inhibiting JNK and p38 MAPK pathways[J]. J Cell Mol Med, 2019, 23(5): 3357-3368. DOI: 10.1111/jcmm.14226
    [43]
    Huang X J, Xi Y, Mao Z K, et al. Vanillic acid attenuates cartilage degeneration by regulating the MAPK and PI3K/AKT/NF-κB pathway[J]. Eur J Pharmacol, 2019, 859: 172481. DOI: 10.1016/j.ejphar.2019.172481
  • Related Articles

    [1]ZHANG Ning, RUAN Gechong, JIAO Yang, LIU Xiaoqing, Jonathan Lio, KANG Lin. Research Hotspots and Trends of Growth Mindset in Medical Education: A Bibliometric Analysis[J]. Medical Journal of Peking Union Medical College Hospital. DOI: 10.12290/xhyxzz.2024-0796
    [2]ZHANG Zhiyang, ZHAO Lin, SHAO Yajuan, WANG Xiang, LI Ningning, NING Xiaohong, GE Yuping. Investigation on Clinical Oncology Teaching Among Medical Students[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 223-228. DOI: 10.12290/xhyxzz.2023-0103
    [3]ZHAO Ruina, WANG Ming, WANG Xin, LI Jianchu, FAN Hongwei, HUANG Xiaoming, LI Wenbo, SU Na, WANG Yahong, ZHU Shenling, ZHANG Xiaoyan, WANG Ying, GAO Luying, WANG Ruojiao, YANG Meng. Application of Ultrasonography Visualization Teachingin the Integration Course of Diagnostics and Ultrasonic Medicine for Eight-year Clinical Medicine Program Students[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(4): 900-904. DOI: 10.12290/xhyxzz.2022-0185
    [4]WU Xin, LI Binglu, ZHENG Chaoji. Exploration of General Surgery Clinical Internship Teaching Mode for Medical Students from "4+4" Pilot Class[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 665-668. DOI: 10.12290/xhyxzz.2022-0177
    [5]LI Tao, ZHANG Kan, YANG Wenyu, LIU Lu, ZHENG Xuan, ZHANG Fan, HU Yi. Clinical Application of Immune Checkpoint Inhibitors CTLA-4 in Solid Tumors[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 652-659. DOI: 10.12290/xhyxzz.2022-0617
    [6]WU Miao. Combining Education, Clinical Practice and Scientific Research: the Early Development of the Obstetrics and Gynecology of Peking Union Medical College(1919—1942)[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 442-448. DOI: 10.12290/xhyxzz.2022-0364
    [7]GU Xiaoyang, MA Mingsheng, SONG Hongmei. Locating Biomedicine in China: the Development of the Division of Pediatrics in Peking Union Medical College Hospital(1922—1942)[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(3): 517-524. DOI: 10.12290/xhyxzz.2021-0664
    [8]LI Ji, YOU Wen, LIU Shuang, RUAN Ge-chong, XU Tian-ming, ZHANG Run-feng, ZHANG Xin-qing, QIAN Jia-ming. Clarify and Resolve Ethical Issues in the Teaching of Clinical Practice Based on the Four-topics Theory——An Example of Patients' Refusal to the Practice of Medical Students[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(2): 282-286. DOI: 10.12290/xhyxzz.20200135
    [9]TANG Hui, YING Hong-yan, BAI Chun-mei. Application of Cyclin-dependent Kinase 4/6 Inhibitors in the Treatment of Malignancies and the Mechanism of Drug Resistance[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(6): 758-765. DOI: 10.3969/j.issn.1674-9081.2020.06.022
    [10]Ya-gang ZUO, Hong-zhong JIN, Hong-wei WANG, Ju QIAO, Yue-hua LIU, Jie LIU, Qiu-ning SUN, Jia-bi WANG. Bullous Pemphigoid Complicated with Tuberculosis: Report of 4 Cases and Literature Review[J]. Medical Journal of Peking Union Medical College Hospital, 2012, 3(4): 375-380. DOI: 10.3969/j.issn.1674-9081.2012.04.003
  • Cited by

    Periodical cited type(10)

    1. 王茜子,郑文洁,张晓敏. 《抗肿瘤坏死因子-α单克隆抗体治疗非感染性葡萄膜炎中国专家共识》解读. 中华眼底病杂志. 2024(01): 20-26 .
    2. 海峡两岸医药卫生交流协会风湿免疫分会眼免疫学组. 抗肿瘤坏死因子-α单克隆抗体治疗非感染性葡萄膜炎中国专家共识. 中华眼底病杂志. 2024(01): 8-19 .
    3. 中国初级卫生保健基金会风湿免疫学专业委员会. 托珠单抗治疗风湿性疾病超说明书用药中国专家共识. 中华医学杂志. 2024(25): 2308-2322 .
    4. 李强,徐毓露,曹梅娟,贺鑫,包彬,谢纯琦. 幼年特发性关节炎评估工具研究进展. 中华风湿病学杂志. 2024(06): 426-431 .
    5. 杭守伟,徐达良,沈杨,何孝亮,陈登环,高雨彤,王欣荣,李娜,陈定赟. 白芍总苷与甲氨蝶呤联合应用对幼年特发性关节炎的治疗效果及安全性评估. 世界复合医学(中英文). 2024(04): 83-86 .
    6. 张燕,肖欢,罗冲,唐雪梅,周娟. 幼年特发性关节炎并发葡萄膜炎的临床特征及危险因素分析. 陆军军医大学学报. 2024(20): 2346-2351 .
    7. 马明圣,宋红梅. 重视风湿免疫病患儿的生存质量. 中华儿科杂志. 2024(12): 1125-1127 .
    8. 沈志军,沈琳,曹绪胜,李林,王红. 阿达木单抗治疗难治性幼年特发性关节炎相关葡萄膜炎12个月效果观察. 眼科. 2023(04): 320-325 .
    9. 路航,王索曦,李卓,崔璟琳,修巍威,宋先德,刘博洋,李佳瑶,金超明,赵安琪,丁虹阳. 地塞米松玻璃体内植入剂联合口服糖皮质激素治疗难治性非感染性葡萄膜炎的效果. 中华眼外伤职业眼病杂志. 2023(08): 572-579 .
    10. 尚李娅,王建仓,唐广贤,任生刚,滑会兰. 儿童自身免疫性疾病相关眼病的诊疗. 国际眼科纵览. 2023(06): 558-563 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close