Citation: | TIAN Kunling, CHEN Chuanning. Notch Signaling Pathway and Congenital Heart Disease[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(3): 649-654. DOI: 10.12290/xhyxzz.2023-0594 |
Congenital heart disease (CHD) refers to abnormal development of the heart in the foetus during the embryonic period, usually accompanied by abnormal development of the large blood vessels. The pathogenesis of CHD is complex and has not yet been elucidated. Studies have shown that the Notch signaling pathway is involved in the whole process of cardiac development, including the formation and development of the primitive heart, and the maintenance of normal cardiac function after birth, and the abnormalities in this pathway can lead to the development of CHD. In this paper, we review the mechanisms of Notch signaling pathway involved in cardiac growth and development, with a view of providing reference for the early diagnosis of CHD.
[1] |
Zhou B H, Lin W L, Long Y L, et al. Notch signaling pathway: architecture, disease, and therapeutics[J]. Signal Transduct Target Ther, 2022, 7(1): 95. DOI: 10.1038/s41392-022-00934-y
|
[2] |
王雪淞, 周林, 李林材, 等. Notch信号通路调控间充质干细胞的增殖与分化[J]. 中国组织工程研究, 2024, 28(19): 3076-3083. https://www.cnki.com.cn/Article/CJFDTOTAL-XDKF202419019.htm
Wang X S, Zhou L, Li L C, et al. Notch signaling pathway regulates proliferation and differentiation of mesenchymal stem cells[J]. Chin J Tissue Eng Res, 2024, 28(19): 3076-3083. https://www.cnki.com.cn/Article/CJFDTOTAL-XDKF202419019.htm
|
[3] |
李婷, 程亚楠, 周小平. 阻断Notch信号通路后补益营卫方对衰老皮肤表皮干细胞Notch1、Jagged1、RBP-Jκ和Hes1表达的影响[J]. 中国老年学杂志, 2023, 43(4): 876-880. DOI: 10.3969/j.issn.1005-9202.2023.04.027
Li T, Cheng Y N, Zhou X P. Effect of supplementing Yingwei recipe on expression of Notch1, Jagged1, RBP-Jκ and Hes1 in epidermal stem cells of aging skin after blocking Notch signaling pathway[J]. Chin J Gerontol, 2023, 43(4): 876-880. DOI: 10.3969/j.issn.1005-9202.2023.04.027
|
[4] |
张岩, 谢新明, 韩冬, 等. Notch信号通路与心血管疾病的研究进展[J]. 医学综述, 2016, 22(14): 2748-2750. DOI: 10.3969/j.issn.1006-2084.2016.14.013
Zhang Y, Xie X M, Han D, et al. Notch signal pathway in cardiovascular diseases[J]. Med Recapitulate, 2016, 22(14): 2748-2750. DOI: 10.3969/j.issn.1006-2084.2016.14.013
|
[5] |
Buijtendijk M F J, Barnett P, Van Den Hoff M J B. Development of the human heart[J]. Am J Med Genet C Semin Med Genet, 2020, 184(1): 7-22. DOI: 10.1002/ajmg.c.31778
|
[6] |
Kraler S, Blaser M C, Aikawa E, et al. Calcific aortic valve disease: from molecular and cellular mechanisms to medical therapy[J]. Eur Heart J, 2022, 43(7): 683-697. DOI: 10.1093/eurheartj/ehab757
|
[7] |
Yang Q, Wu F, Mi Y P, et al. Aberrant expression of miR-29b-3p influences heart development and cardiomyocyte proliferation by targeting NOTCH2[J]. Cell Prolif, 2020, 53(3): e12764. DOI: 10.1111/cpr.12764
|
[8] |
Langa P, Shafaattalab S, Goldspink P H, et al. A perspective on Notch signalling in progression and arrhythmogenesis in familial hypertrophic and dilated cardiomyopathies[J]. Philos Trans R Soc Lond B Biol Sci, 2023, 378(1879): 20220176. DOI: 10.1098/rstb.2022.0176
|
[9] |
Poelmann R E, Gittenberger-De Groot A C. Hemodynamics in cardiac development[J]. J Cardiovasc Dev Dis, 2018, 5(4): 54.
|
[10] |
Abu Nahia K, Migda M, Quinn T A, et al. Genomic and physiological analyses of the zebrafish atrioventricular canal reveal molecular building blocks of the secondary pacemaker region[J]. Cell Mol Life Sci, 2021, 78(19/20): 6669-6687.
|
[11] |
Prados B, Gómez-Apiñániz P, Papoutsi T, et al. Myocardial Bmp2 gain causes ectopic EMT and promotes cardiomyocyte proliferation and immaturity[J]. Cell Death Dis, 2018, 9(3): 399. DOI: 10.1038/s41419-018-0442-z
|
[12] |
Andrés-Delgado L, Galardi-Castilla M, Münch J, et al. Notch and Bmp signaling pathways act coordinately during the formation of the proepicardium[J]. Dev Dyn, 2020, 249(12): 1455-1469. DOI: 10.1002/dvdy.229
|
[13] |
MacGrogan D, Münch J, De La Pompa J L. Notch and interacting signalling pathways in cardiac development, disease, and regeneration[J]. Nat Rev Cardiol, 2018, 15(11): 685-704. DOI: 10.1038/s41569-018-0100-2
|
[14] |
Wang Y D, Lu P F, Jiang L P, et al. Control of sinus venous valve and sinoatrial node development by endocardial NOTCH1[J]. Cardiovasc Res, 2020, 116(8): 1473-1486. DOI: 10.1093/cvr/cvz249
|
[15] |
Ye S Q, Wang C K, Xu Z H, et al. Impaired human cardiac cell development due to NOTCH1 deficiency[J]. Circ Res, 2023, 132(2): 187-204. DOI: 10.1161/CIRCRESAHA.122.321398
|
[16] |
Tsedeke A T, Allanki S, Gentile A, et al. Cardiomyocyte heterogeneity during zebrafish development and regeneration[J]. Dev Biol, 2021, 476: 259-271. DOI: 10.1016/j.ydbio.2021.03.014
|
[17] |
De Zoysa P, Toubat O, Harvey D, et al. Murine model of cardiac defects observed in Adams-Oliver syndrome driven by Delta-like ligand-4 haploinsufficiency[J]. Stem Cells Dev, 2021, 30(12): 611-621. DOI: 10.1089/scd.2021.0058
|
[18] |
Rammah M, Théveniau-Ruissy M, Sturny R, et al. PPARγ and NOTCH regulate regional identity in the murine cardiac outflow tract[J]. Circ Res, 2022, 131(10): 842-858. DOI: 10.1161/CIRCRESAHA.122.320766
|
[19] |
Neffeová K, Olejníčková V, Naňka O, et al. Development and diseases of the coronary microvasculature and its communication with the myocardium[J]. WIREs Mech Dis, 2022, 14(5): e1560. DOI: 10.1002/wsbm.1560
|
[20] |
Travisano S I, Oliveira V L, Prados B, et al. Coronary arterial development is regulated by a Dll4-Jag1-EphrinB2 signaling cascade[J]. Elife, 2019, 8: e49977. DOI: 10.7554/eLife.49977
|
[21] |
Tomanek R, Angelini P. Embryology of coronary arteries and anatomy/pathophysiology of coronary anomalies. A comprehensive update[J]. Int J Cardiol, 2019, 281: 28-34. DOI: 10.1016/j.ijcard.2018.11.135
|
[22] |
Zhang Q, Wang L, Wang S Q, et al. Signaling pathways and targeted therapy for myocardial infarction[J]. Signal Transduct Target Ther, 2022, 7(1): 78. DOI: 10.1038/s41392-022-00925-z
|
[23] |
McCallinhart P E, Biwer L A, Clark O E, et al. Myoendothelial junctions of mature coronary vessels express notch signaling proteins[J]. Front Physiol, 2020, 11: 29. DOI: 10.3389/fphys.2020.00029
|
[24] |
国家卫生健康委员会国家结构性心脏病介入质量控制中心, 国家心血管病中心结构性心脏病介入质量控制中心, 中华医学会心血管病学分会先心病经皮介入治疗指南工作组, 等. 常见先天性心脏病经皮介入治疗指南(2021版)[J]. 中华医学杂志, 2021, 101(38): 3054-3076. DOI: 10.3760/cma.j.cn112137-20210730-01696
National Center for Quality Control of Structural Heart Disease Intervention, National Health Commission, National Cardiovascular Center Structural Heart Disease Intervention Quality Control Center, Working Group on Guidelines for Percutaneous Interventional Treatment of Congenital Heart Disease, Cardiovascular Branch of the Chinese Medical Association, et al. Guidelines for percutaneous interventional treatment of common congenital heart disease (2021 edition)[J]. Natl Med J China, 2021, 101(38): 3054-3076. DOI: 10.3760/cma.j.cn112137-20210730-01696
|
[25] |
艾珊珊, 何爱彬. 先天性心脏病基础研究进展[J]. 协和医学杂志, 2021, 12(3): 291-297. https://www.cnki.com.cn/Article/CJFDTOTAL-XHYX202103002.htm
Ai S S, He A B. Advances in basic research of congenital heart disease[J]. Med J PUMCH, 2021, 12(3): 291-297. https://www.cnki.com.cn/Article/CJFDTOTAL-XHYX202103002.htm
|
[26] |
Yu Z Y, Zhou X, Liu Z Y, et al. KMT2D-NOTCH mediates coronary abnormalities in hypoplastic left heart syndrome[J]. Circ Res, 2022, 131(3): 280-282. DOI: 10.1161/CIRCRESAHA.122.320783
|
[27] |
Miao Y F, Tian L, Martin M, et al. Intrinsic endocardial defects contribute to hypoplastic left heart syndrome[J]. Cell Stem Cell, 2020, 27(4): 574-589. e8. DOI: 10.1016/j.stem.2020.07.015
|
[28] |
Yu Z Y, Pek N M Q, Gu M X. Delving into the molecular world of single ventricle congenital heart disease[J]. Curr Cardiol Rep, 2022, 24(5): 463-471. DOI: 10.1007/s11886-022-01667-8
|
[29] |
Salguero-Jiménez A, Grego-Bessa J, D'Amato G, et al. Myocardial Notch1-Rbpj deletion does not affect NOTCH signaling, heart development or function[J]. PLoS One, 2018, 13(12): e0203100. DOI: 10.1371/journal.pone.0203100
|
[30] |
Page D J, Miossec M J, Williams S G, et al. Whole exome sequencing reveals the major genetic contributors to nonsyndromic Tetralogy of Fallot[J]. Circ Res, 2019, 124(4): 553-563. DOI: 10.1161/CIRCRESAHA.118.313250
|
[31] |
Tian G X, He L L, Gu R Y, et al. CpG site hypomethylation at ETS1 binding region regulates DLK1 expression in Chinese patients with Tetralogy of Fallot[J]. Mol Med Rep, 2022, 25(3): 93. DOI: 10.3892/mmr.2022.12609
|
[32] |
Ovali F. Molecular and mechanical mechanisms regulating ductus arteriosus closure in preterm infants[J]. Front Pediatr, 2020, 8: 516. DOI: 10.3389/fped.2020.00516
|
[33] |
Salvador J, Hernandez G E, Ma F Y, et al. Transcriptional evaluation of the ductus arteriosus at the single-cell level uncovers a requirement for vim (vimentin) for complete closure[J]. Arterioscler Thromb Vasc Biol, 2022, 42(6): 732-742. DOI: 10.1161/ATVBAHA.121.317172
|
[34] |
Kostina A S, Uspensky V E, Irtyuga O B, et al. Notch-dependent EMT is attenuated in patients with aortic aneurysm and bicuspid aortic valve[J]. Biochim Biophys Acta, 2016, 1862(4): 733-740. DOI: 10.1016/j.bbadis.2016.02.006
|
[35] |
Abudupataer M, Zhu S C, Yan S Q, et al. Aorta smooth muscle-on-a-chip reveals impaired mitochondrial dynamics as a therapeutic target for aortic aneurysm in bicuspid aortic valve disease[J]. Elife, 2021, 10: e69310. DOI: 10.7554/eLife.69310
|
[36] |
Podyacheva E, Toropova Y. SIRT1 activation and its effect on intercalated disc proteins as a way to reduce doxorubicin cardiotoxicity[J]. Front Pharmacol, 2022, 13: 1035387. DOI: 10.3389/fphar.2022.1035387
|
[37] |
Ackah R L, Yasuhara J, Garg V. Genetics of aortic valve disease[J]. Curr Opin Cardiol, 2023, 38(3): 169-178. DOI: 10.1097/HCO.0000000000001028
|
[38] |
Garg V, Muth A N, Ransom J F, et al. Mutations in NOTCH1 cause aortic valve disease[J]. Nature, 2005, 437(7056): 270-274. DOI: 10.1038/nature03940
|
[39] |
Acharya A, Hans C P, Koenig S N, et al. Inhibitory role of Notch1 in calcific aortic valve disease[J]. PLoS One, 2011, 6(11): e27743. DOI: 10.1371/journal.pone.0027743
|
[40] |
Kohut T J, Gilbert M A, Loomes K M. Alagille syndrome: a focused review on clinical features, genetics, and treatment[J]. Semin Liver Dis, 2021, 41(4): 525-537. DOI: 10.1055/s-0041-1730951
|
[41] |
Gilbert M A, Bauer R C, Rajagopalan R, et al. Alagille syndrome mutation update: comprehensive overview of JAG1 and NOTCH2 mutation frequencies and insight into missense variant classification[J]. Hum Mutat, 2019, 40(12): 2197-2220. DOI: 10.1002/humu.23879
|
[42] |
Meester J A N, Verstraeten A, Alaerts M, et al. Overlapp-ing but distinct roles for NOTCH receptors in human cardiovascular disease[J]. Clin Genet, 2019, 95(1): 85-94. DOI: 10.1111/cge.13382
|
[1] | LI Chaofan, LIU Conghui, SUN Mingyang, WU Lin. Comparative Analysis of "Same Disease, Same Price" Policy in Diagnosis Related Group Payment Under the Goal of Tiered Healthcare Delivery[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(5): 1045-1051. DOI: 10.12290/xhyxzz.2024-0414 |
[2] | LI Yang, DU Leilei, XU Fei, LI Yixuan, QIAO En. Big Data and Artificial Intelligence in Medicine[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(1): 184-189. DOI: 10.12290/xhyxzz.2022-0182 |
[3] | Multi-disciplinary Expert Team for Primary Care COVID-19 Practice, Peking Union Medical College Hospital. Practical Recommendations of Peking Union Medical College Hospital for Assessment and Management of COVID-19 in Primary Care (2023)[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(1): 60-74. DOI: 10.12290/xhyxzz.2023-0014 |
[4] | WANG Feiyue. Digital Doctors and Parallel Healthcare: From Medical Knowledge Automation to Intelligent Metasystems Medicine[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(6): 829-833. DOI: 10.12290/xhyxzz.2021-0586 |
[5] | Zhu-ming JIANG, Zhuo LI, Yang WANG, Hui ZHANG, Yan WANG, Bin JIE, Hai FANG, Wei LI, Yan-wu ZHANG, Fen ZHANG, Tie-jun HU, Da-kui LI, Wei-ming KANG, Kang YU, Xin YE. Brief Review of the 3T's Roadmap of Translational Medicine for Parenteral and Enteral Nutrition in China[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(5): 508-513. DOI: 10.3969/j.issn.1674-9081.2020.05.002 |
[6] | Rui-feng LIU, Yu XIA, Yu-xin JIANG. Application of Artificial Intelligence in Ultrasound Medicine[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(5): 453-457. DOI: 10.3969/j.issn.1674-9081.2018.05.015 |
1. |
毕建蕾,李亚,陆俊玲,王馨犹,刘佳欣,李雪,王丽霞. 新医科背景下“医学+X”模式在妇产科学研究生教学中的运用. 医学教育研究与实践. 2025(01): 34-40 .
![]() | |
2. |
戴佳原,须晋,谢静,沈敏,张抒扬. 罕见病医学科临床医学博士后教学模式探索. 协和医学杂志. 2024(05): 1224-1229 .
![]() | |
3. |
蔡晗. 专科医院博士后人才引育与激励机制研究. 中国卫生产业. 2024(06): 41-44 .
![]() | |
4. |
张佳慧,丁欣,崔娜. 分层培养模式在重症医学科进修医师教学实践中的探索. 医学研究杂志. 2023(04): 185-188 .
![]() | |
5. |
龚梦,雷凡. 以住培学员为中心的临床教学的思考. 继续医学教育. 2023(06): 113-116 .
![]() | |
6. |
张翰林,何紫棠,李玥,罗林枝,张抒扬. 临床医师胜任力的经典模型与研究进展. 协和医学杂志. 2023(06): 1296-1300 .
![]() | |
7. |
蒋邦红,张莉,宋培军,徐静,李旭文,陈卫东. 分层递进式教学法对整形外科住培医师面部创伤教学的效果评价. 淮海医药. 2022(01): 95-98 .
![]() | |
8. |
张菁,芮娜,冉红,张平洋. 模拟器教学在临床医学技能培训中的应用与思考. 中国医药导报. 2022(35): 189-192 .
![]() |