Citation: | XIONG Xuechun, WU Huanwen, REN Fei, CUI Li, LIANG Zhiyong, ZHAO Ze. An Automatic Quantitative Analysis Method of Ki-67 Index for Breast Cancer Immunohistochemistry Based on Fusion of Spatial and Multi-scale Features[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(4): 581-589. DOI: 10.12290/xhyxzz.2022-0158 |
[1] |
Cao W, Chen HD, Yu YW, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chin Med J (Engl), 2021, 134: 783-791. DOI: 10.1097/CM9.0000000000001474
|
[2] |
Skjervold AH, Pettersen HS, Valla M, et al. Visual and digital assessment of Ki-67 in breast cancer tissue-a comparison of methods[J]. Diagn Pathol, 2022, 17: 45. DOI: 10.1186/s13000-022-01225-4
|
[3] |
Li L, Han D, Yu Y, et al. Artificial intelligence-assisted interpretation of Ki-67 expression and repeatability in breast cancer[J]. Diagn Pathol, 2022, 17: 20. DOI: 10.1186/s13000-022-01196-6
|
[4] |
Nielsen TO, Leung SCY, Rimm DL, et al. Assessment of Ki-67 in breast cancer: updated recommendations from the international Ki-67 in breast cancer working group[J]. J Natl Cancer Inst, 2021, 113: 808-819. DOI: 10.1093/jnci/djaa201
|
[5] |
刘月平. 国际乳腺癌Ki-67工作组Ki-67评估更新的主要内容解读[J]. 中华病理学杂志, 2021, 50: 704-709. DOI: 10.3760/cma.j.cn112151-20210303-00179
Liu YP. Interpretation of Ki-67 assessment update of International Ki-67 in Breast Cancer Working Group[J]. Zhonghua Binglixue Zazhi, 2021, 50: 704-709. DOI: 10.3760/cma.j.cn112151-20210303-00179
|
[6] |
Zhou SK, Greenspan H, Davatzikos C, et al. A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises[J]. Proc IEEE, 2021, arXiv: 2008.09104.
|
[7] |
Rimm DL, Leung SCY, McShane LM, et al. An interna-tional multicenter study to evaluate reproducibility of automated scoring for assessment of Ki-67 in breast cancer[J]. Mod Pathol, 2019, 32: 59-69. DOI: 10.1038/s41379-018-0109-4
|
[8] |
Li C, Li XT, Rahaman MM, et al. A comprehensive review of computer-aided whole-slide image analysis: from datasets to feature extraction, segmentation, classification and detection approaches[J]. Artif Intell Rev, 2022, ArXiv: 2102.10553.
|
[9] |
Xing F, Cornish TC, Bennett T, et al. Pixel-to-pixel learning with weak supervision for single-stage nucleus recognition in Ki-67 images[J]. IEEE Trans Biomed Eng, 2019, 66: 3088-3097. DOI: 10.1109/TBME.2019.2900378
|
[10] |
Negahbani F, Sabzi R, Pakniyat Jahromi B, et al. PathoNet introduced as a deep neural network backend for evaluation of Ki-67 and tumor-infiltrating lymphocytes in breast cancer[J]. Sci Rep, 2021, 11: 8489. DOI: 10.1038/s41598-021-86912-w
|
[11] |
Shete PG, Kharate GK. Evaluation of Immunohistochemistry (Ihc) Marker Her2 In Breast Cancer[J]. ICTACT J Image Video Proc, 2016, 7: 1318-1323. DOI: 10.21917/ijivp.2016.0192
|
[12] |
Ko CC, Chen YR, Lin WY. Improving the evaluation accuracies of histopathologic grade and Ki-67 immunohistochemistry expression of breast carcinoma using computer image processing(Ⅱ)[C]. 2016 International Computer Symposium (ICS). IEEE, 2016: 410-414.
|
[13] |
Altman DG, Bland JM. Measurement in medicine: the analysis of method comparison studies[J]. J Roy Statist Soc: Series D, 1983, 32: 307-317.
|
[14] |
Hou L, Samaras D, Kurc T M, et al. Patch-based convolutional neural network for whole slide tissue image classifica-tion[C]. Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition, 2016: 2424-2433.
|
[15] |
Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transact Syst Man Cyb, 1979, 9: 62-66. DOI: 10.1109/TSMC.1979.4310076
|
[16] |
Abubakar M, Figueroa J, Ali HR, et al. Combined quantitative measures of ER, PR, HER2, and KI67 provide more prognostic information than categorical combinations in luminal breast cancer[J]. Mod Pathol, 2019, 32: 1244-1256. DOI: 10.1038/s41379-019-0270-4
|
[17] |
Stepec D, Skocaj D. Unsupervised detection of cancerous regions in histology imagery using image-to-image translation[C]. Proceedings of the IEEE/CVF Conference on Com-puter Vision and Pattern Recognition, 2021: 3785-3792.
|
[18] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv, 2014. https://doi.org/10.48550/arXiv.1409.1556.
|
[19] |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
[20] |
Howard AG, Zhu M, Chen B, et al. Mobilenets: Effi-cient convolutional neural networks for mobile vision applications[J]. arXiv, 2017. https://doi.org/10.48550/arXiv.1704.04861.
|
[21] |
Ye J, Luo Y, Zhu C, et al. Breast cancer image classification on WSI with spatial correlations[C]. ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019: 1219-1223.
|
[22] |
Li Y, Ping W. Cancer metastasis detection with neural conditional random field[J]. arXiv, 2018. https://doi.org/10.48550/arXiv.1806.07064.
|
[23] |
Lafferty J, McCallum A, Pereira F. Conditional random fields: Probabilistic models for segmenting and labeling sequence data[C]. Proc. 18th International Conf. on Machine Learning, 2001: 282-289.
|
[24] |
Zheng Y, Jiang Z, Zhang H, et al. Adaptive color deconvolution for histological WSI normalization[J]. Comput Methods Programs Biomed, 2019, 170: 107-120. DOI: 10.1016/j.cmpb.2019.01.008
|
[25] |
Geijs DJ, Intezar M, Litjens G, et al. Automatic color unmixing of IHC stained whole slide images[C]. Digit Pathol, 2018, 10581: 105810L.
|
[26] |
Kumar N, Gupta R, Gupta S. Whole slide imaging (WSI) in pathology: current perspectives and future directions[J]. J Digit Imaging, 2020, 33: 1034-1040. DOI: 10.1007/s10278-020-00351-z
|
[27] |
Goldhirsch A, Winer EP, Coates AS, et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013[J]. Ann Oncol, 2013, 24: 2206-2223. DOI: 10.1093/annonc/mdt303
|
[1] | ZHANG Shan, LIU Jie. Interpretation of NCCN Clinical Practice Guidelines for Primary Cutaneous Lymphomas (Version 1.2024) Based on the Current Diagnosis and Treatment Status of China[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(5): 1029-1037. DOI: 10.12290/xhyxzz.2024-0605 |
[2] | YAN Xinchun, HUO Li. Evaluation of Von Hippel-Lindau Syndrome Through Novel Small Molecular Tracer 68Ga-NY104 PET/CT Imaging[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(4): 911-915. DOI: 10.12290/xhyxzz.2024-0216 |
[3] | ZHAO Jing, LIN Yiting, LI Yunkui, ZHANG Xiaotong, ZHAO Yuanyuan, CHEN Yong, CHEN Keqi, WANG Mengzhao. A Case Report of Thoracic Enhanced Chest CT Combined with Endobronchial Ultrasound for the Diagnosis of Asymptomatic Bronchial Dieulafoy's Disease[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 629-632. DOI: 10.12290/xhyxzz.2022-0423 |
[4] | HUANG Mengju, DI Xiao, XU Weifeng, WANG Xuan, CHEN Yuexin, ZHENG Yuehong. Nutcracker Syndrome with Varicocele Treated with Left Gonadal Vein-inferior Vena Cava Transposition and High Ligation of Spermatic Vein: A Case Report[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(4): 658-663. DOI: 10.12290/xhyxzz.2021-0503 |
[5] | LIU Zijia, ZHANG Lu, LIU Hongsheng, CANG Jing, WANG Tianlong, MIN Su, CHEN Lixia, CHEN Wei, LI Shanqing, HUANG Yuguang, Working Group of "Expert Consensus on Prehabilitation Management of Thoracic Surgery", Chinese Society of Anesthesiology. Expert Consensus on Prehabilitation Management for Enhanced Recovery in Patients Undergoing Thoracic Surgery(2022)[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(3): 387-401. DOI: 10.12290/xhyxzz.2022-0178 |
[6] | Noyes' Knee Disorders: Surgery, Rehabilitation, Clinical Outcomes(2nd ed.)(2016)[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(1): 18-18. |
[7] | Zhong-xing BING, Shan-qing LI. Legend of Thoracic Surgery: the Earliest Exploration of Surgical Treatment for Esophageal Cancer in China was Carried Out in PUMCH[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(6): 569-573. DOI: 10.3969/j.issn.1674-9081.2018.06.016 |
[8] | Fei XIAO, Chao-yang LIANG. Highlights of the 2018 Annual Meeting of American Association for Thoracic Surgery[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(4): 379-384. DOI: 10.3969/j.issn.1674-9081.2018.04.017 |
[9] | Wei WANG, Min WEI, Hong-mei SONG, Zheng-qing QIU, Hui-ping SHI, Shi-min ZHAO. Comparison between Methylation-specific Multiplex Ligation-dependent Probe Amplification and Methylation-specific PCR in Diagnosis of Prader-Willi Syndrome[J]. Medical Journal of Peking Union Medical College Hospital, 2014, 5(4): 369-375. DOI: 10.3969/j.issn.1674-9081.2014.04.003 |
[10] | Feng-xia YAO, Rui-fang SUI, Wei-min ZHANG, Yi DAI, Yu-pu GUO. Multiplex Ligation-dependent Probe Amplification Technology for Detection of Mitochondriopathy[J]. Medical Journal of Peking Union Medical College Hospital, 2013, 4(2): 104-108. DOI: 10.3969/j.issn.1674-9081.2013.02.004 |
1. |
吴雪彬,翁桂珍. 老年肿瘤化疗患者生前预嘱知信行的风险因素研究. 中国卫生标准管理. 2025(02): 191-194 .
![]() | |
2. |
陈龙,任明辉. 生前预嘱制度的检视与完善. 协和医学杂志. 2025(02): 523-528 .
![]() |