Skip to main content

Advertisement

Log in

A Dynamic Network Game of the Fintech Industry

  • Published:
Journal of the Operations Research Society of China Aims and scope Submit manuscript

Abstract

Economies of scale, economies of scope, and technology spillover are decisive economic elements that are crucial to the development in the Fintech industry. These positive externalities are often realized through network links. In this paper, we present a dynamic network of financial firms which exhibits these decisive elements. The network game equilibria are characterized. A Pareto efficient solution involving collaboration of all firms is provided. To obtain a fair-share distribution of cooperative gains, the Shapley value is adopted as the sharing mechanism. Payoff distribution mechanisms which guarantee the fulfilment of the Shapley value distribution in each stage of the cooperation duration are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Demirguc-Kunt, A., Klapper, L., Singer, D., Ansar, S. and Hess, J.: The Global Findex Database 2017: Measuring Financial Inclusion and the Fintech Revolution. The World Bank (2018). http://documents.worldbank.org/curated/en/332881525873182837/pdf/126033-PUB-PUBLIC-pubdate-4-19-2018.pdf

  2. Gomber, P., Kauffman, R.J., Parker, C., Weber, B.W.: On the Fintech revolution: interpreting the forces of innovation, disruption, and transformation in financial services. J. Manag. Inf. Syst. 35(1), 220–265 (2018)

    Article  Google Scholar 

  3. Goldstein, I., Jiang, W., Karolyi, G.A.: To FinTech and beyond. Rev. Financ. Stud. 32(5), 1647–1661 (2019)

    Article  Google Scholar 

  4. Hua, X., Huang, Y., Zheng, Y.: Current practices, newinsights, and emerging trends of financial technologies. Ind. Manag. Data Syst. 117(7), 1401–1410 (2019)

    Article  Google Scholar 

  5. Wang, Y., Sui, X., Zhang, Q.: Can fintech improve the efficiency of commercial banks? An analysis based on big data. Res. Int. Bus. Financ. (2021). https://doi.org/10.1016/j.ribaf.2020.101338

    Article  Google Scholar 

  6. Lee, D.K.C.: Invited editorial comment. J. Altern. Invest. 20(3), 6–15 (2017)

    Article  Google Scholar 

  7. Beijnen, C., Bolt, W.: Size matters: economies of scale in european payments processing. J. Bank. Finance 33(2), 203–210 (2009)

    Article  Google Scholar 

  8. Schmiedel, H., Malkamäki, M., Tarkka, J.: Economies of scale and technological development in securities depository and settlement systems. J. Bank. Finance 30(6), 1783–1806 (2006)

    Article  Google Scholar 

  9. Li, S., Marinč, M.: Economies of scale and scope in financial market infrastructures. J. Int. Finan. Markets. Inst. Money 53, 17–49 (2018)

    Article  Google Scholar 

  10. Boot, A.W.A.: The future of banking: from scale & scope economies to fintech. Eur. Econ. 2017(2), 77–95 (2017)

    Google Scholar 

  11. Amir, R.: Modelling imperfectly appropriable R&D via spillovers. Int. J. Ind. Organ. 18, 1013–1032 (2000)

    Article  Google Scholar 

  12. Amir, R., Wooders, J.: Effects of one-way spillovers on market shares, industry price, welfare, and R&D cooperation. J. Econ. Manag. Strateg. 8, 223–249 (1999)

    Google Scholar 

  13. Amir, R., Wooders, J.: Noncooperative versus cooperative R&D with endogenous spillover rates. Games Econom. Behav. 42, 183–207 (2003)

    Article  Google Scholar 

  14. D’Aspremont, C., Jacquemin, A.: Cooperative and noncooperative R&D in duopoly with spillovers. Am. Econ. Rev. 78, 1133–1137 (1988)

    Google Scholar 

  15. Lambertini, L., Rossini, G.: The gains from cooperative R&D with a concave technology and spillovers. Int. Game Theor. Rev. 11(1), 77–85 (2009)

    Article  MathSciNet  Google Scholar 

  16. Suzumura, K.: Cooperative and noncooperative R&D in duopoly with spillovers. Am. Econ. Rev. 82, 1307–1320 (1992)

    Google Scholar 

  17. Katsoulacos, Y., Ulph, D.: Endogenous spillovers and the performance of research joint ventures. J. Ind. Econ. 46, 333–357 (1998)

    Article  Google Scholar 

  18. Feichtinger, G., Lambertini, L., Leitmann, G., Wrzaczek, S.: R&D for green technologies in a dynamic oligopoly: schumpeter arrow and inverted-U’s. Eur. J. Oper. Res. 249, 1131–1138 (2016)

    Article  MathSciNet  Google Scholar 

  19. Mazalov, V., Chirkova, J.: Networking Games. Elsevier Science & Technology, San Diego (2019)

    Google Scholar 

  20. Wie, B.W.: A differential game model of nash equilibrium on a congested traffic network. Networks 23, 557–565 (1993)

    Article  MathSciNet  Google Scholar 

  21. Wie, B.W.: A differential game approach to the dynamic mixed behavior traffic network equilibrium problem. Eur. J. Oper. Res. 83(1), 117–136 (1995)

    Article  Google Scholar 

  22. Zhang, H., Jiang, L.V., Huang, S., Wang, J., Zhang, Y.: Attack-defense differential game model for network defense strategy selection. IEEE Access (2018). https://doi.org/10.1109/ACCESS.2018.2880214

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pai, H.M.: A differential game formulation of a controlled network. Queueing Syst. Theor. Appl. Arch. 64(4), 325–358 (2010)

    Article  MathSciNet  Google Scholar 

  24. Meza, M.A.G., Lopez-Barrientos, J.D.: A Differential Game of a Duopoly with Network Externalities. In: Petrosyan, L.A., Mazalov, V.V. (eds.) Recent Advances in Game Theory and Applications. Springer, Birkhäuser (2016). https://doi.org/10.1007/978-3-319-43838-2

    Chapter  Google Scholar 

  25. Cao, H., Ertin, E.: MiniMax equilibrium of networked differential games. ACM Trans. Auton. Adapt. Syst. (2008). https://doi.org/10.1145/1452001.1452004

    Article  Google Scholar 

  26. Petrosyan, L.A.: Cooperative differential games on networks. Proc. Instit. Math. Mech. Ural Branch of RAS 16(5), 143–150 (2010). (in Russian)

    Google Scholar 

  27. Petrosyan, L.A., Yeung, D.W.K.: Shapley value for differential network games: theory and application. J. Dyn. Games 8(2), 151–166 (2021)

    Article  MathSciNet  Google Scholar 

  28. Petrosyan, L.A. and Yeung, D.W.K.: Construction of Dynamically Stable Solutions in Differential Network Games. Forthcoming in Lecture Notes in Control and Information Sciences – Proceedings, Special Issue on Stability, Control, Differential Games (SCDG2019), Springer (2020).

  29. Yeung, D.W.K., Petrosyan, L.A., Zhang, Y.X.: Trade with technology spillover: a dynamic network game analysis. Int. Game Theor. Rev. 23(1), 2050011 (2021). https://doi.org/10.1142/S0219198920500115

    Article  MathSciNet  Google Scholar 

  30. Shapley, L.S.: A Value for N-person Games. In: Kuhn, H., Tucker, A. (eds.) Contributions to the Theory of Games, pp. 307–317. Princeton, Princeton University Press (1953)

    Google Scholar 

  31. Yeung, D.W.K., Petrosyan, L.A.: Dynamic Shapley Value and Dynamic Nash Bargaining. Nova Science, New York (2018)

    Google Scholar 

  32. Yeung, D.W.K., Petrosyan, L.A.: Subgame consistent solutions for cooperative stochastic dynamic games. J. Optim. Theory Appl. 145, 579–596 (2010)

    Article  MathSciNet  Google Scholar 

  33. Yeung, D.W.K., Petrosyan, L.A.: Subgame Consistent Cooperation: A Comprehensive Treatise. Springer (2016)

    Book  Google Scholar 

  34. Yeung, D.W.K., Petrosyan, L.A.: Subgame consistent cooperative solution of dynamic games with random horizon. J. Optim. Theory Appl. 150, 78–97 (2011)

    Article  MathSciNet  Google Scholar 

  35. Yeung, D.W.K., Petrosyan, L.A.: Subgame consistent cooperative solutions for randomly furcating stochastic dynamic games with uncertain horizon. Int. Game Theor. Rev. 16(2), 1440012.01-1440012.29 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank two anonymous reviewers whose excellent sugges458 tions improve the paper significantly.

Author information

Authors and Affiliations

Authors

Contributions

D.W.K Yeung & L.A Petrosyan: Conceptualization, methodology development, model construction, original draft preparation and supervision. Y-X. Zhang: Literature survey, data curation, reviewing, verification of formulae and final editing.

Corresponding author

Correspondence to David W. K. Yeung.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendices

Appendix 1

Proof of Proposition 1

To prove condition (7) of Proposition 1, we perform the maximization operator in (4) and invoke equation (6) to obtain the optimal strategies

$$v_{t}^{i(i)} = \left( {\frac{{\alpha_{i}^{{}} p_{t}^{i(i)} }}{{c_{t}^{i(i)} }}} \right)^{{\frac{1}{{(1 - \alpha_{i} )}}}} x_{t}^{i} \;{\text{and}}\;v_{t}^{i(j)} = \left( {\frac{{\varepsilon_{i}^{{}} p_{t}^{i(j)} }}{{c_{t}^{i(j)} }}} \right)^{{\frac{1}{{(1 - \varepsilon_{i} )}}}} \varpi_{t}^{i(j)} x_{t}^{j} \;{\text{and}},\;{\text{for}}\,j \in \overline{K}(i);$$
$$u_{t}^{i} = \frac{{(\overline{A}_{t + 1}^{i(i)} a_{t}^{i} \delta_{t}^{t + 1} )^{2} }}{{4(c_{t}^{i} )^{2} }}x_{t}^{i} ,\;{\text{for}}\;i \in N\;{\text{and}}\;t \in \{ 1,2, \cdots ,{T}\} .$$
(A1)

Substituting the optimal strategies in (A1) into (4) we obtain

$$\begin{aligned} & \left( {\overline{A}_{t}^{i(i)} x_{t}^{i} + \sum\limits_{\begin{subarray}{l} \ell \in N \\ \ell \ne i \end{subarray} } {\overline{A}_{t}^{i(\ell )} x_{t}^{\ell } + \overline{C}_{t}^{i} } } \right)\delta_{1}^{t} \\& = \left[ {p_{t}^{i(i)} \left( {\frac{{\alpha_{i}^{{}} p_{t}^{i(i)} }}{{c_{t}^{i(i)} }}} \right)^{{\frac{{\alpha_{i} }}{{(1 - \alpha_{i} )}}}} (1 - \alpha_{i} )x_{t}^{i} - \frac{{(\overline{A}_{t + 1}^{i(i)} a_{t}^{i} \delta_{t}^{t + 1} )^{2} }}{{4c_{t}^{i} }}x_{t}^{i} } \right. \\ & + \left. {\sum\limits_{{j \in \overline{K}(i)}} {\left( {p_{t}^{i(j)} \left( {\frac{{\varepsilon_{i}^{{}} p_{t}^{i(j)} }}{{c_{t}^{i(j)} }}} \right)^{{\frac{{\varepsilon_{i} }}{{(1 - \varepsilon_{i} )}}}} (1 - \varepsilon_{i} )\varpi_{t}^{i(j)} x_{t}^{j} + \gamma_{t}^{i(j)} x_{t}^{i} } \right)} } \right]\delta_{1}^{t} \\ & + \left( {\overline{A}_{t + 1}^{i(i)} x_{t + 1}^{i} + \sum\limits_{\begin{subarray}{l} \ell \in N \\ \ell \ne i \end{subarray} } {\overline{A}_{t + 1}^{i(\ell )} x_{t + 1}^{\ell } + \overline{C}_{t + 1}^{i} } } \right)\delta_{1}^{t + 1} ,{\text{for}}\;t \in \{ 1,2, \cdots ,{T}\} \;{\text{and}}\;i \in N, \\ \end{aligned}$$
(A2)

where \(x_{t + 1}^{i} = x^{i} + a_{t}^{i} \frac{{\overline{A}_{t + 1}^{i(i)} a_{t}^{i} \delta_{t}^{t + 1} }}{{2c_{t}^{i} }}x_{t}^{i} + \sum\limits_{{j \in \overline{K}(i)}} {\lambda_{t}^{i(j)} x_{{}}^{j} - \sigma_{t}^{i} x_{{}}^{i} ,}\) and

$$x_{t + 1}^{\ell } = x_{{}}^{\ell } + a_{t}^{\ell } \frac{{\overline{A}_{t + 1}^{\ell (\ell )} a_{t}^{\ell } \delta_{t}^{t + 1} }}{{2c_{t}^{\ell } }}x_{t}^{\ell } + \sum\limits_{{\varsigma \in \overline{K}(\ell )}} {\lambda_{t}^{\ell (\varsigma )} x_{{}}^{\varsigma } - \sigma_{t}^{\ell } x_{{}}^{\ell } } ,{\text{for}}\;\ell \in N\;{\text{and}}\;\ell \ne i.$$
(A3)

Note that both the LHS and RHS of equation (A2) are linear functions of \(x_{t}^{{}} = (x_{t}^{1} ,x_{t}^{2} , \cdots ,x_{t}^{n} )\).

We classify the state variables in (A2)-(A3) into three categories: (i) \(x_{{}}^{i}\), (ii) \(x_{{}}^{j}\), for \(j \in \overline{K}(i)\), and (iii) \(x_{{}}^{k}\), for \(k \notin \overline{K}(i)\). After grouping terms, we obtain the following results.

For (i) \(x_{{}}^{i}\),

$$\begin{aligned} \overline{A}_{t}^{i(i)} x_{t}^{i} = & p_{t}^{i(i)} \left( {\frac{{\alpha_{i}^{{}} p_{t}^{i(i)} }}{{c_{t}^{i(i)} }}} \right)^{{\frac{{\alpha_{i} }}{{(1 - \alpha_{i} )}}}} (1 - \alpha_{i} )x_{t}^{i} - \frac{{(\overline{A}_{t + 1}^{i(i)} a_{t}^{i} \delta_{t}^{t + 1} )^{2} }}{{4c_{t}^{i} }}x_{t}^{i} + \sum\limits_{{j \in \overline{K}(i)}} {\gamma_{t}^{i(j)} x_{t}^{i} } \\ & + \delta_{t}^{t + 1} A_{t + 1}^{i(i)} \left( {a_{t}^{i} \frac{{\overline{A}_{t + 1}^{i(i)} a_{t}^{i} \delta_{t}^{t + 1} }}{{2c_{t}^{i} }}x_{t}^{i} + (1 - \sigma_{t}^{i} )x_{{}}^{i} + \sum\limits_{{j \in \overline{K}(i)}}^{{}} {} \overline{A}_{t + 1}^{i(j)} \lambda_{t}^{j(i)} x_{{}}^{i} } \right); \\ \end{aligned}$$
(A4)

(ii) \(x_{{}}^{j}\), for \(j \in \overline{K}(i)\),

$$\begin{aligned} \overline{A}_{t}^{i(j)} x_{t}^{j} = & p_{t}^{i(j)} \left( {\frac{{\varepsilon_{i}^{{}} p_{t}^{i(j)} }}{{c_{t}^{i(j)} }}} \right)^{{\frac{{\varepsilon_{i} }}{{(1 - \varepsilon_{i} )}}}} (1 - \varepsilon_{i} )\varpi_{t}^{i(j)} x_{t}^{j} \\ & + \delta_{t}^{t + 1} \overline{A}_{t + 1}^{i(j)} \left( {a_{t}^{j} \frac{{\overline{A}_{t + 1}^{j(j)} a_{t}^{j} \delta_{t}^{t + 1} }}{{2c_{t}^{j} }}x_{t}^{j} + (1 - \sigma_{t}^{j} )x_{{}}^{j} } \right) + \delta_{t}^{t + 1} \sum\limits_{{\ell \in \vartheta_{{}}^{i(j)\ell } }}^{{}} {\overline{A}_{t + 1}^{i(\ell )} \lambda_{t}^{\ell (j)} x_{{}}^{j} ,} \\ \end{aligned}$$
(A5)
$${\text{where}}\;\vartheta_{{}}^{i(j)\ell } \;{\text{is }}\;{\text{the}}\;{\text{ set }}\;{\text{of}}\;\ell \;{\text{with}}\;\overline{K}(\ell )\;{\text{containing}}\;j,\;{\text{that}}\;{\text{ is}}\;\{ \ell :j \in \overline{K}(\ell )\};$$

(iii) \(x_{{}}^{k}\), for \(k \notin \overline{K}(i)\),

$$\begin{aligned} & \overline{A}_{t}^{i(k)} x_{t}^{k} = \delta_{t}^{t + 1} \overline{A}_{t + 1}^{i(k)} \left( {a_{t}^{k} \frac{{\overline{A}_{t + 1}^{k(k)} a_{t}^{k} \delta_{t}^{t + 1} }}{{2c_{t}^{k} }}x_{t}^{k} + (1 - \sigma_{t}^{k} )x_{{}}^{k} } \right) + \delta_{t}^{t + 1} \sum\limits_{{\ell \in \vartheta_{{}}^{i(k)\ell } }} {\overline{A}_{t + 1}^{i(\ell )} \lambda_{t}^{\ell (k)} x_{{}}^{k} ,} \hfill \\ & {\text{for}} \;k \in [N\backslash \overline{K}(i)], \hfill \\ \end{aligned}$$
(A6)

where \(\vartheta_{{}}^{i(k)\ell }\) is the set of \(\ell\) with \(\overline{K}(\ell )\) containing \(k\), that is \(\{ \ell :k \in \overline{K}(\ell )\}\).

Hence, for (A4)-(A6) to hold, it is required that:

$$\begin{aligned} \overline{A}_{t}^{i(i)} = & p_{t}^{i(i)} \left( {\frac{{\alpha_{i}^{{}} p_{t}^{i(i)} }}{{c_{t}^{i(i)} }}} \right)^{{\frac{{\alpha_{i} }}{{(1 - \alpha_{i} )}}}} (1 - \alpha_{i} ) - \frac{{(\overline{A}_{t + 1}^{i(i)} a_{t}^{i} \delta_{t}^{t + 1} )^{2} }}{{4c_{t}^{i} }} + \sum\limits_{{j \in \overline{K}(i)}}^{{}} {\gamma_{t}^{i(j)} } \\ & + \delta_{t}^{t + 1} \overline{A}_{t + 1}^{i(i)} \left( {a_{t}^{i} \frac{{\overline{A}_{t + 1}^{i(i)} a_{t}^{i} \delta_{t}^{t + 1} }}{{2c_{t}^{i} }} + (1 - \sigma_{t}^{i} ) + \sum\limits_{{j \in \overline{K}(i)}}^{{}} {\overline{A}_{t + 1}^{i(j)} \lambda_{t}^{j(i)} } } \right),\overline{A}_{T + 1}^{i(i)} = q_{T + 1}^{i(i)} ; \\ \end{aligned}$$
(A7)
$$ {\begin{aligned} &\overline{A}_{t}^{i(j)} = p_{t}^{i(j)} \left( {\frac{{\varepsilon_{i}^{{}} p_{t}^{i(j)} }}{{c_{t}^{i(j)} }}} \right)^{{\frac{{\varepsilon_{i} }}{{(1 - \varepsilon_{i} )}}}} (1 - \varepsilon_{i} )\varpi_{t}^{i(j)} \\ &\qquad\qquad + \delta_{t}^{t + 1} \overline{A}_{t + 1}^{i(j)} \left( {a_{t}^{j} \frac{{\overline{A}_{t + 1}^{j(j)} a_{t}^{j} \delta_{t}^{t + 1} }}{{2c_{t}^{j} }} + (1 - \sigma_{t}^{j} )} \right) \\ &\qquad\qquad + \delta_{t}^{t + 1} \sum\limits_{{\ell \in \vartheta_{{}}^{i(j)\ell } }}^{{}} {\overline{A}_{t + 1}^{i(\ell )} \lambda_{t}^{\ell (j)} ,\;\overline{A}_{T + 1}^{i(j)} = 0,} \, {\text{for}}\;j \in \overline{K}(i); \end{aligned}} $$
(A8)
$$\begin{aligned} & \overline{A}_{t}^{i(k)} = \delta_{t}^{t + 1} \overline{A}_{t + 1}^{i(k)} \left( {a_{t}^{k} \frac{{\overline{A}_{t + 1}^{k(k)} a_{t}^{k} \delta_{t}^{t + 1} }}{{2c_{t}^{k} }} + (1 - \sigma_{t}^{k} )} \right) + \delta_{t}^{t + 1} \sum\limits_{{\ell \in \vartheta_{{}}^{i(k)\ell } }}^{{}} {\overline{A}_{t + 1}^{i(\ell )} \lambda_{t}^{\ell (k)} ,\;\overline{A}_{T + 1}^{i(k)} = 0} , \hfill \\ & {\text{for}}\;k \in [N\backslash \overline{K}(i)]. \hfill \\ \end{aligned}$$
(A9)

Since \(\overline{A}_{T + 1}^{i(\ell )} = 0\), for \(\ell \ne i\), therefore according to (A9), \(\overline{A}_{t}^{i(k)} = 0\), for \(k \notin \overline{K}(i)\) and \(t \in \{ 1,2, \cdots ,{T}\}\), and with \(\overline{A}_{t}^{i(k)} = 0\), for \(k \notin \overline{K}(i)\) and \(t \in \{ 1,2, \cdots ,{T}\}\), we can express equation (A8) as

$$\begin{aligned} \overline{A}_{t}^{i(j)} = & \;p_{t}^{i(j)} \left( {\frac{{\varepsilon_{i}^{{}} p_{t}^{i(j)} }}{{c_{t}^{i(j)} }}} \right)^{{\frac{{\varepsilon_{i} }}{{(1 - \varepsilon_{i} )}}}} (1 - \varepsilon_{i} )\varpi_{t}^{i(j)} \; + \delta_{t}^{t + 1} \overline{A}_{t + 1}^{i(j)} \left( {a_{t}^{j} \frac{{\overline{A}_{t + 1}^{j(j)} a_{t}^{j} \delta_{t}^{t + 1} }}{{2c_{t}^{j} }}\; + (1 - \sigma_{t}^{j} )} \right) \\ & + \delta_{t}^{t + 1} \sum\limits_{{\ell \in [\overline{K}(i) \cap \overline{K}(j)]}}^{{}} {\overline{A}_{t + 1}^{i(\ell )} \lambda_{t}^{\ell (j)} ,\,\overline{A}_{T + 1}^{i(j)} = 0} ,\;{\text{for}}\;j \in \overline{K}(i). \\ \end{aligned}$$
(A10)

Finally, we can obtain

$$\overline{C}_{T + 1}^{i} = M_{T + 1}^{i} ,{\text{ and}}\;\overline{C}_{t}^{i} = \delta_{t}^{t + 1} \overline{C}_{t + 1}^{i} {,}\;{\text{for}}\;t \in \{ 1,2, \cdots ,{T}\} \;{\text{and}}\;i \in N.$$
(A11)

Appendix 2

Proof of Proposition 2

To prove condition (18) of Proposition 2, we perform the maximization operator in (15) and invoke equation (17) to obtain the optimal cooperative strategies

$$\begin{aligned} & v_{t}^{i(i)} = \left( {\frac{{\alpha_{i}^{{}} p_{t}^{i(i)} }}{{c_{t}^{i(i)} }}} \right)^{{\frac{1}{{(1 - \alpha_{i} )}}}} x_{t}^{i} \;{\text{and}}\;v_{t}^{i(j)} = \left( {\frac{{\varepsilon_{i}^{{}} p_{t}^{i(j)} }}{{c_{t}^{i(j)} }}} \right)^{{\frac{1}{{(1 - \varepsilon_{i} )}}}} \varpi_{t}^{i(j)} x_{t}^{j} ,{\text{ for}}\;j \in K(i); \hfill \\ & \quad u_{t}^{i} = \frac{{(\hat{A}_{t + 1}^{i} a_{t}^{i} \delta_{t}^{t + 1} )^{2} }}{{4(c_{t}^{i} )^{2} }}x_{t}^{i} ,{\text{for}}\;i \in N\;{\text{and}}\;t \in \{ 1,2, \cdots ,{T}\} . \hfill \\ \end{aligned}$$
(B1)

Substituting the optimal strategies in (B1) into (15) we obtain

$$\begin{aligned} & \left( {\sum\limits_{i \in N}^{{}} {\hat{A}_{t}^{i} x_{t}^{i} + \hat{C}_{t}^{{}} } } \right)\delta_{1}^{t} = \sum\limits_{i \in N}^{{}} {\left[ {p_{t}^{i(i)} \left( {\frac{{\alpha_{i}^{{}} p_{t}^{i(i)} }}{{c_{t}^{i(i)} }}} \right)^{{\frac{{\alpha_{i} }}{{(1 - \alpha_{i} )}}}} (1 - \alpha_{i} )x_{t}^{i} - \frac{{(\hat{A}_{t + 1}^{i} a_{t}^{i} \delta_{t}^{t + 1} )^{2} }}{{4c_{t}^{i} }}x_{t}^{i} } \right.} \hfill \\ & \quad + \left. {\left. {\sum\limits_{j \in K(i)}^{{}} {\left( {p_{t}^{i(j)} \left( {\begin{array}{*{20}c} {} \\ {} \\ \end{array} } \right.\frac{{\varepsilon_{i}^{{}} p_{t}^{i(j)} }}{{c_{t}^{i(j)} }}} \right)}^{{\frac{{\varepsilon_{i} }}{{(1 - \varepsilon_{i} )}}}} (1 - \varepsilon_{i} )\varpi_{t}^{i(j)} x_{t}^{j} + \sum\limits_{j \in K(i)}^{{}} {\gamma_{t}^{i(j)} x_{t}^{i} } } \right)} \right]\delta_{1}^{t} \hfill \\ & \quad + \left( {\begin{array}{*{20}c} {} \\ {} \\ \end{array} } \right.\sum\limits_{i \in N}^{{}} {} \hat{A}_{t + 1}^{i} x_{t + 1}^{i} + \hat{C}_{t + 1}^{{}} \left. {\begin{array}{*{20}c} {} \\ {} \\ \end{array} } \right)\delta_{1}^{t + 1} , \hfill \\ \end{aligned}$$
(B2)

where \(x_{t + 1}^{i} = x_{{}}^{i}\)\(+ a_{t}^{i} \frac{{\hat{A}_{t + 1}^{i} a_{t}^{i} \delta_{t}^{t + 1} }}{{2c_{t}^{i} }}x_{t}^{i}\)\(+ \sum\limits_{j \in K(i)}^{{}} {} \lambda_{t}^{i(j)} x_{{}}^{j} - \sigma_{t}^{i} x_{{}}^{i}\), for \(i \in N\).

Note that both the LHS and RHS of equation (B2) are linear functions of \(x_{t}^{{}} = (x_{t}^{1} ,x_{t}^{2} , \cdots ,x_{t}^{n} )\). Grouping terms involving \(x_{t}^{{}}\), we obtain the following results:

$$\begin{aligned} & \hat{A}_{t}^{i} x_{t}^{i} = p_{t}^{i(i)} \left( {\frac{{\alpha_{i}^{{}} p_{t}^{i(i)} }}{{c_{t}^{i(i)} }}} \right)^{{\frac{{\alpha_{i} }}{{(1 - \alpha_{i} )}}}} (1 - \alpha_{i} )x_{t}^{i} - \frac{{(A_{t + 1}^{i} a_{t}^{i} \delta_{t}^{t + 1} )^{2} }}{{4c_{t}^{i} }}x_{t}^{i} + \sum\limits_{j \in K(i)}^{{}} {\gamma_{t}^{i(j)} x_{t}^{i} } \hfill \\ & \quad + \sum\limits_{j \in K(i)}^{{}} {p_{t}^{j(i)} \left( {\frac{{\varepsilon_{j}^{{}} p_{t}^{j(i)} }}{{c_{t}^{j(i)} }}} \right)^{{\frac{{\varepsilon_{j} }}{{(1 - \varepsilon_{j} )}}}} } (1 - \varepsilon_{j} )\varpi_{t}^{j(i)} x_{t}^{i} + \delta_{t}^{t + 1} A_{t + 1}^{i} \left( {x_{{}}^{i} + a_{t}^{i} \frac{{A_{t + 1}^{i} a_{t}^{i} \delta_{t}^{t + 1} }}{{2c_{t}^{i} }}x_{t}^{i} - \sigma_{t}^{i} x_{{}}^{i} } \right) \hfill \\ & \quad + \delta_{t}^{t + 1} \sum\limits_{j \in K(i)}^{{}} {\hat{A}_{t + 1}^{j} \lambda_{t}^{j(i)} x_{{}}^{i} }, {\text{for}} \, i \in N.\hfill \\ \end{aligned}$$
(B3)

.

For (B3) to hold, it is required that

\(\hat{A}_{T + 1}^{i} =\)\(q_{T + 1}^{i(i)}\), and

$$\begin{aligned} \hat{A}_{t}^{i} & = p_{t}^{i(i)} \left( {\begin{array}{*{20}c} {} \\ {} \\ \end{array} } \right.\frac{{\alpha_{i}^{{}} p_{t}^{i(i)} }}{{c_{t}^{i(i)} }}\left. {\begin{array}{*{20}c} {} \\ {} \\ \end{array} } \right)^{{\frac{{\alpha_{i} }}{{(1 - \alpha_{i} )}}}} (1 - \alpha_{i} ) - \frac{{(\hat{A}_{t + 1}^{i} a_{t}^{i} \delta_{t}^{t + 1} )^{2} }}{{4c_{t}^{i} }} + \sum\limits_{j \in K(i)}^{{}} {} \gamma_{t}^{i(j)} \hfill \\ & \quad + \sum\limits_{j \in K(i)}^{{}} {} p_{t}^{j(i)} \left( {\begin{array}{*{20}c} {} \\ {} \\ \end{array} } \right.\frac{{\varepsilon_{j}^{{}} p_{t}^{j(i)} }}{{c_{t}^{j(i)} }}\left. {\begin{array}{*{20}c} {} \\ {} \\ \end{array} } \right)^{{\frac{{\varepsilon_{j} }}{{(1 - \varepsilon_{j} )}}}} (1 - \varepsilon_{j} )\varpi_{t}^{j(i)} \hfill \\ & \quad + \delta_{t}^{t + 1} \hat{A}_{t + 1}^{i} \left( {(1 - \sigma_{t}^{i} )\; + a_{t}^{i} \frac{{\hat{A}_{t + 1}^{i} a_{t}^{i} \delta_{t}^{t + 1} }}{{2c_{t}^{i} }}} \right)\; + \delta_{t}^{t + 1} \sum\limits_{j \in K(i)}^{{}} {\hat{A}_{t + 1}^{j} \;\lambda_{t}^{j(i)} }, \hfill \\ \end{aligned}$$
(B4)

for \(t \in \{ 1,2, \cdots ,{T}\}\) and \(i \in N\).

Finally, we can obtain \(\hat{C}_{T + 1}^{{}} = \sum\limits_{i \in N}^{{}} {M_{T + 1}^{i} }\), and

$$\hat{C}_{t}^{{}} \; = \delta_{t}^{t + 1} \hat{C}_{t + 1}^{{}} ,\;{\text{for}}\;t \in \{ 1,2, \cdots ,{T}\}.$$
(B5)

Hence Proposition 2 follows.

Appendix 3

Proof of Proposition 3

To prove condition (30) of Proposition 3, we perform the maximization operator in (26) and invoke equation (29) to obtain the optimal strategies of firm \(i \in S\) as

\(v_{t}^{i(i)} = \left( {\begin{array}{*{20}c} {} \\ {} \\ \end{array} } \right.\frac{{\alpha_{i}^{{}} p_{t}^{i(i)} }}{{c_{t}^{i(i)} }}\left. {\begin{array}{*{20}c} {} \\ {} \\ \end{array} } \right)^{{\frac{1}{{(1 - \alpha_{i} )}}}} x_{t}^{i}\) and \(v_{t}^{i(j)} = \left( {\begin{array}{*{20}c} {} \\ {} \\ \end{array} } \right.\frac{{\varepsilon_{i}^{{}} p_{t}^{i(j)} }}{{c_{t}^{i(j)} }}\left. {\begin{array}{*{20}c} {} \\ {} \\ \end{array} } \right)^{{\frac{1}{{(1 - \varepsilon_{i} )}}}} \varpi_{t}^{i(j)} x_{t}^{j}\), for \(j \in K(i) \cap S\);

$$u_{t}^{i} = \frac{{(A_{t + 1}^{i} a_{t}^{i} \delta_{t}^{t + 1} )^{2} }}{{4(c_{t}^{i} )^{2} }}x_{t}^{i} ,\;{\text{for}}\;t \in \{ 1,2, \cdots ,{T}\}.$$
(C1)

Substituting the optimal strategies in (C1) into (26)-(27) we obtain

$$\begin{aligned} & \left( {\sum\limits_{i \in S}^{{}} {A_{t}^{(S)i} x_{t}^{i} + C_{t}^{(S)} } } \right)\delta_{1}^{t} = \sum\limits_{i \in S}^{{}} {\left[\vphantom{\left( {p_{t}^{i(j)} \left( {\frac{{\varepsilon_{i}^{{}} p_{t}^{i(j)} }}{{c_{t}^{i(j)} }}} \right)^{{\frac{{\varepsilon_{i} }}{{(1 - \varepsilon_{i} )}}}} (1 - \varepsilon_{i} )\varpi_{t}^{i(j)} x_{t}^{j} + \gamma_{t}^{i(j)} x_{t}^{i} } \right)} {p_{t}^{i(i)} \left( {\frac{{\alpha_{i}^{{}} p_{t}^{i(i)} }}{{c_{t}^{i(i)} }}} \right)} \right.^{{\frac{{\alpha_{i} }}{{(1 - \alpha_{i} )}}}} (1 - \alpha_{i} )x_{t}^{i} - \frac{{(A_{t + 1}^{(S)i} a_{t}^{i} \delta_{t}^{t + 1} )^{2} }}{{4c_{t}^{i} }}x_{t}^{i} } \hfill \\ &\quad + \left. {\sum\limits_{j \in K(i) \cap S}^{{}} {\left( {p_{t}^{i(j)} \left( {\frac{{\varepsilon_{i}^{{}} p_{t}^{i(j)} }}{{c_{t}^{i(j)} }}} \right)^{{\frac{{\varepsilon_{i} }}{{(1 - \varepsilon_{i} )}}}} (1 - \varepsilon_{i} )\varpi_{t}^{i(j)} x_{t}^{j} + \gamma_{t}^{i(j)} x_{t}^{i} } \right)} } \right]\delta_{1}^{t} \hfill \\ & \quad + \left( {\sum\limits_{i \in S}^{{}} {A_{t + 1}^{(S)i} x_{t + 1}^{i} + C_{t + 1}^{(S)} } } \right)\delta_{1}^{t + 1} , \hfill \\& \quad \, x_{t + 1}^{i} = x_{t}^{i} \; + \frac{{a_{t}^{i} (A_{t + 1}^{(S)i} a_{t}^{i} \delta_{t}^{t + 1} )}}{{2c_{t}^{i} }}x_{t}^{i} \; + \sum\limits_{j \in K(i) \cap S}^{{}} {} \lambda_{t}^{i(j)} x_{{}}^{j} - \sigma_{t}^{i} x_{{}}^{i} , \, \text{for}\, i \in S \end{aligned}$$
(C2)

and

$$\begin{aligned} & \left( {\sum\limits_{\ell \in N\backslash S}^{{}} {A_{t}^{(N\backslash S)\ell } x_{t}^{\ell } + C_{t}^{(N\backslash S)} } } \right)\delta_{1}^{t} \; \\& = \sum\limits_{\ell \in N\backslash S}^{{}} {\left[ {p_{t}^{\ell (\ell )} \left( {\frac{{\alpha_{\ell }^{{}} p_{t}^{\ell (\ell )} }}{{c_{t}^{\ell (\ell )} }}} \right)^{{\frac{{\alpha_{\ell } }}{{(1 - \alpha_{\ell } )}}}} (1 - \alpha_{\ell } )x_{t}^{\ell } \; - \frac{{(A_{t + 1}^{(N\backslash S)\ell } a_{t}^{\ell } \delta_{t}^{t + 1} )^{2} }}{{4c_{t}^{\ell } }}x_{t}^{\ell } } \right.} \\&\quad + \left. {\sum\limits_{j \in K(\ell ) \cap N\backslash S}^{{}} {\left( {p_{t}^{\ell (j)} \left( {\frac{{\varepsilon_{\ell }^{{}} p_{t}^{\ell (j)} }}{{c_{t}^{\ell (j)} }}} \right)^{{\frac{{\varepsilon_{\ell } }}{{(1 - \varepsilon_{\ell } )}}}} (1 - \varepsilon_{\ell } )\varpi_{t}^{\ell (j)} x_{t}^{j} + \gamma_{t}^{\ell (j)} } \right)} } \right]\delta_{1}^{t} \\& \quad + \left( {\sum\limits_{\ell \in N\backslash S}^{{}} {A_{t + 1}^{(N\backslash S)\ell } x_{t + 1}^{\ell } + C_{t + 1}^{(N\backslash S)} } } \right)\delta_{1}^{t + 1} , \\& \,\, x_{t + 1}^{\ell } = x_{t}^{\ell } + \frac{{a_{t}^{\ell } (A_{t + 1}^{(N\backslash S)\ell } a_{t}^{\ell } \delta_{t}^{t + 1} )}}{{2c_{t}^{\ell } }}x_{t}^{\ell } + \sum\limits_{j \in K(i) \cap N\backslash S}^{{}} {\lambda_{t}^{\ell (j)} x_{{}}^{j} - \sigma_{t}^{\ell } x_{{}}^{\ell } }, \, \text{for}\, \ell \in N\backslash S. \end{aligned}$$
(C3)

Note that (i) both the LHS and RHS of equation (C2) are linear functions of \(x_{t}^{S}\), and (ii) both the LHS and RHS of equation (C3) are linear functions of \(x_{t}^{N\backslash S}\). Grouping terms involving \(x_{t}^{i}\) for \(i \in S\) and \(x_{t}^{\ell }\) in \(\ell \in N\backslash S\), we obtain the following results:

$$ \begin{aligned} A_{t}^{(S)i} x_{t}^{i} & = p_{t}^{i(i)} \left( {\frac{{\alpha_{i}^{{}} p_{t}^{i(i)} }}{{c_{t}^{i(i)} }}} \right)^{{\frac{{\alpha_{i} }}{{(1 - \alpha_{i} )}}}} (1 - \alpha_{i} )x_{t}^{i} \; - \frac{{(A_{t + 1}^{(S)i} a_{t}^{i} \delta_{t}^{t + 1} )^{2} }}{{4c_{t}^{i} }}x_{t}^{i} + \sum\limits_{j \in K(i) \cap S}^{{}} {\gamma_{t}^{i(j)} x_{t}^{i} } \\& \quad + \sum\limits_{j \in K(i) \cap S}^{{}} {p_{t}^{j(i)} \left( {\frac{{\varepsilon_{j}^{{}} p_{t}^{j(i)} }}{{c_{t}^{j(i)} }}} \right)^{{\frac{{\varepsilon_{j} }}{{(1 - \varepsilon_{j} )}}}} (1 - \varepsilon_{j} )\varpi_{t}^{j(i)} x_{t}^{i} } \\&\quad + A_{t + 1}^{(S)i} \delta_{t}^{t + 1} \left( {x_{t}^{i} + \frac{{a_{t}^{i} (A_{t + 1}^{(S)i} a_{t}^{i} \delta_{t}^{t + 1} )}}{{2c_{t}^{i} }}x_{t}^{i} - \sigma_{t}^{i} x_{{}}^{i} } \right) + \delta_{t}^{t + 1} \sum\limits_{j \in K(i) \cap S}^{{}} {A_{t + 1}^{(S)j} \lambda_{t}^{j(i)} x_{{}}^{i} }, \hfill \\ & {\text{for}}\;i \in S; \end{aligned}$$
(C4)

and

$$\begin{aligned} A_{t}^{(N\backslash S)\ell } x_{t}^{\ell } & = \,p_{t}^{\ell (\ell )} \sum\limits_{\ell \in N\backslash S}^{{}} {\left( {\frac{{\alpha_{\ell }^{{}} p_{t}^{\ell (\ell )} }}{{c_{t}^{\ell (\ell )} }}} \right)}^{{\frac{{\alpha_{\ell } }}{{(1 - \alpha_{\ell } )}}}} (1 - \alpha_{\ell } )x_{t}^{\ell } \; - \frac{{(A_{t + 1}^{(N\backslash S)\ell } a_{t}^{\ell } \delta_{t}^{t + 1} )^{2} }}{{4c_{t}^{\ell } }}x_{t}^{\ell }\hfill \\ & \quad + \sum\limits_{j \in K(\ell ) \cap N\backslash S}^{{}} {\gamma_{t}^{\ell (j)} x_{t}^{\ell } } \hfill \\& \quad + \sum\limits_{j \in K(\ell ) \cap N\backslash S}^{{}} {p_{t}^{j(\ell )} \left( {\frac{{\varepsilon_{j}^{{}} p_{t}^{j(\ell )} }}{{c_{t}^{j(\ell )} }}} \right)^{{\frac{{\varepsilon_{j} }}{{(1 - \varepsilon_{j} )}}}} (1 - \varepsilon_{j} )\varpi_{t}^{j(\ell )} x_{t}^{\ell } } \hfill \\ &\quad + A_{t + 1}^{(N\backslash S)\ell } \delta_{t}^{t + 1} \left( {x_{t}^{\ell } + \frac{{a_{t}^{\ell } (A_{t + 1}^{(N\backslash S)\ell } a_{t}^{\ell } \delta_{t}^{t + 1} )}}{{2c_{t}^{\ell } }}x_{t}^{\ell } - \sigma_{t}^{\ell } x_{{}}^{\ell } } \right) \hfill \\& \quad + \delta_{t}^{t + 1} \sum\limits_{j \in K(\ell ) \cap N\backslash S}^{{}} {A_{t + 1}^{(N\backslash S)j} \lambda_{t}^{j(\ell )} x_{{}}^{\ell } }{\text{for}}\;\;\ell \in N\backslash S . \end{aligned}$$
(C5)

For (C4)-(C5) and Proposition 3 to hold, it is required that

$$\begin{aligned} & A_{T + 1}^{(S)i} = \;q_{T + 1}^{i(i)} , \\ & \quad A_{t}^{(S)i} = p_{t}^{i(i)} \left( {\frac{{\alpha_{i}^{{}} p_{t}^{i(i)} }}{{c_{t}^{i(i)} }}} \right)^{{\frac{{\alpha_{i} }}{{(1 - \alpha_{i} )}}}} (1 - \alpha_{i} ) - \frac{{(A_{t + 1}^{(S)i} a_{t}^{i} \delta_{t}^{t + 1} )^{2} }}{{4c_{t}^{i} }} + \sum\limits_{j \in K(i) \cap S}^{{}} {\gamma_{t}^{i(j)} } \hfill \\ &\quad + \sum\limits_{j \in K(i) \cap S}^{{}} {p_{t}^{j(i)} \left( {\frac{{\varepsilon_{j}^{{}} p_{t}^{j(i)} }}{{c_{t}^{j(i)} }}} \right)^{{\frac{{\varepsilon_{j} }}{{(1 - \varepsilon_{j} )}}}} (1 - \varepsilon_{j} )\varpi_{t}^{j(i)} } \hfill \\ &\quad + A_{t + 1}^{(S)i} \delta_{t}^{t + 1} \left( {(1 - \sigma_{t}^{i} ) + \frac{{a_{t}^{i} (A_{t + 1}^{(S)i} a_{t}^{i} \delta_{t}^{t + 1} )}}{{2c_{t}^{i} }}} \right)\; + \,\delta_{t}^{t + 1} \sum\limits_{j \in K(i) \cap S}^{{}} {A_{t + 1}^{(S)j} \lambda_{t}^{j(i)} ,} \hfill \end{aligned}$$
(C6)

for \(i \in S; \) and

$$\begin{aligned} & A_{T + 1}^{(N\backslash S)\ell } = \;q_{T + 1}^{\ell (\ell )} ,\\ & \quad A_{t}^{(N\backslash S)\ell } = \;p_{t}^{\ell (\ell )} \sum\limits_{\ell \in N\backslash S}^{{}} {\left( {\frac{{\alpha_{\ell }^{{}} p_{t}^{\ell (\ell )} }}{{c_{t}^{\ell (\ell )} }}} \right)^{{\frac{{\alpha_{\ell } }}{{(1 - \alpha_{\ell } )}}}} (1 - \alpha_{\ell } )\; - \frac{{(A_{t + 1}^{(N\backslash S)\ell } a_{t}^{\ell } \delta_{t}^{t + 1} )^{2} }}{{4c_{t}^{\ell } }}\, + \sum\limits_{j \in K(\ell ) \cap N\backslash S}^{{}} {\gamma_{t}^{\ell (j)} } } \hfill \\ & \qquad + \sum\limits_{j \in K(\ell ) \cap N\backslash S}^{{}} {p_{t}^{j(\ell )} \left( {\frac{{\varepsilon_{j}^{{}} p_{t}^{j(\ell )} }}{{c_{t}^{j(\ell )} }}} \right)^{{\frac{{\varepsilon_{j} }}{{(1 - \varepsilon_{j} )}}}} (1 - \varepsilon_{j} )\varpi_{t}^{j(\ell )} x_{t}^{\ell } } \hfill \\ & \qquad + A_{t + 1}^{(N\backslash S)\ell } \delta_{t}^{t + 1} \left( {x_{t}^{\ell } \; + \frac{{a_{t}^{\ell } (A_{t + 1}^{(S)\ell } a_{t}^{\ell } \delta_{t}^{t + 1} )}}{{2c_{t}^{\ell } }}x_{t}^{\ell } \; - \sigma_{t}^{\ell } x_{{}}^{\ell } } \right)\; + \delta_{t}^{t + 1} \sum\limits_{j \in K(\ell ) \cap N\backslash S}^{{}} {A_{t + 1}^{(N\backslash S)j} \;\lambda_{t}^{j(\ell )} ,} \hfill \\ & \quad \end{aligned}$$
(C7)

for \(\ell \in N\backslash S.\)

Finally, we can obtain \(C_{T + 1}^{(S)} = \;\sum\limits_{i \in S}^{{}} {C_{T + 1}^{i} }\) and \(C_{T + 1}^{(N\backslash S)} = \;\sum\limits_{\ell \in N\backslash S}^{{}} {C_{T + 1}^{\ell } }\),

$$C_{t}^{(S)} \; = \delta_{t}^{t + 1} C_{t + 1}^{(S)} \;{\text{and}} \;\;C_{t}^{(N\backslash S)} \; = \delta_{t}^{t + 1} C_{t + 1}^{(N\backslash S)} \;{\text{for}}\;t \in \{ 1,2, \cdots ,{T}\} .$$
(C8)

Hence Proposition 3 follows.

Appendix 4

Proof of Proposition 4

Consider two distinct sets—\(S_{1}^{{}}\) and \(S_{2}^{{}}\). The characteristic function \(v(S_{1}^{{}} \cup S_{2}^{{}} ;t,x)\) is the maximized value of the payoff of coalition \(S_{1}^{{}} \cup S_{2}^{{}}\) which is the solution to the problem

$$\begin{aligned} &\mathop{\mathop{\mathop{\mathop{\max}\limits_{u_{\tau }^{i},v_{\tau}^{i(j)}}}\limits_{j \in K(i) \cap (S_{1} \cup S_{2})}}\limits_{i \in S_{1} \cup S_{2}}}\limits_{\tau \in \{ t,t + 1, \cdots ,{T}\}} \left\{ {\sum\limits_{{i \in S_{1} \cup S_{2} }}{\left[ {\sum\limits_{\tau = t}^{T} {\left. \left( {p_{\tau }^{i(i)} (v_{\tau }^{i(i)} )^{{\alpha_{i} }} (x_{\tau }^{i} )^{{1 - \alpha_{i} }} - c_{\tau }^{i(i)} (v_{\tau }^{i(i)} ) - c_{\tau }^{i} (u_{\tau }^{i} )} \right. \right.} } \right.} } \right. \\& + \left. {\sum\limits_{{j \in K(i) \cap (S_{1} \cup S_{2} )}}{\left( {p_{\tau }^{i(j)} (v_{\tau }^{i(j)} )^{{\varepsilon_{i} }} (\varpi_{\tau }^{i(j)} x_{\tau }^{j} )^{{(1 - \varepsilon_{i} )}} - c_{\tau }^{i(j)} (v_{\tau }^{i(j)} ) + \gamma_{\tau }^{i(j)} x_{t}^{i} } \right)} } \right)\delta_{1}^{\tau } \\& + \left. {\left. {\left( {q_{T + 1}^{i(i)} x_{T + 1}^{i} + M_{T + 1}^{i} } \right)\delta_{1}^{T + 1} } \right. \left. {\sum\limits_{{i \in S_{1} \cup S_{2} }}}\right]} \right\} \end{aligned}$$
(D1)

s.t. state dynamics

$$x_{t + 1}^{i} = x_{t}^{i} + a_{t}^{i} (u_{t}^{i} x_{t}^{i} )^{1/2} + \sum\limits_{{j \in K(i) \cap (S_{1} \cup S_{2} )}}^{{}} {\lambda_{t}^{i(j)} x_{t}^{j} - \sigma_{t}^{i} x_{t}^{i} } .$$
(D2)

Note that in Theorem 3, the maximization problem of coalition \(S_{1}^{{}} \cup S_{2}^{{}}\) is independent of the maximization problem of coalition \(N\backslash (S_{1}^{{}} \cup S_{2}^{{}} )\). Hence the characteristic function \(v(S_{1}^{{}} \cup S_{2}^{{}} ;t,x)\) can be obtained by solving the problem (D1)-(D2).

Similarly, the characteristic function \(v(S_{1}^{{}} ;t,x)\) is the maximized value of the payoff of coalition \(S_{1}^{{}}\) which is the solution to the problem

$$ \begin{aligned} & \mathop{\mathop{\mathop{\mathop{\max}\limits_{u_{\tau }^{i} ,v_{\tau }^{i(j)}}}\limits_{j \in K(i) \cap S_{1}}}\limits_{i \in S_{1}}}\limits_{\tau \in \{ t,t + 1, \cdots ,{\text{T}}\}} \left\{ {\sum\limits_{{i \in S_{1} }} {\left[ {\sum\limits_{\tau = t}^{T} {\left({\sum_{11111}} {p_{\tau }^{i(i)} (v_{\tau }^{i(i)} )^{{\alpha_{i} }} (x_{\tau }^{i} )^{{1 - \alpha_{i} }} - c_{\tau }^{i(i)} (v_{\tau }^{i(i)} ) - c_{\tau }^{i} (u_{\tau }^{i} )} \right.} } \right.} } \right. \\& + \sum\limits_{{j \in K(i) \cap S_{1} }} {\left( {p_{\tau }^{i(j)} (v_{\tau }^{i(j)} )^{{\varepsilon_{i} }} (\varpi_{\tau }^{i(j)} x_{\tau }^{j} )^{{(1 - \varepsilon_{i} )}} - c_{\tau }^{i(j)} (v_{\tau }^{i(j)} ) + \gamma_{\tau }^{i(j)} x_{t}^{i} } \right)\left. \right)\delta_{1}^{\tau } } \\& + \left. {\left. {\left( {q_{T + 1}^{i(i)} x_{T + 1}^{i} + M_{T + 1}^{i} } \right)\delta_{1}^{T + 1} } {\sum_{11111}}\right]} {\sum_{11111}}\right\} \end{aligned} $$
(D3)

s.t. state dynamics

$$ x_{t + 1}^{i} = x_{t}^{i} + a_{t}^{i} (u_{t}^{i} x_{t}^{i} )^{1/2} + \sum\limits_{{j \in K(i) \cap S_{1} }}^{{}} {\lambda_{t}^{i(j)} x_{t}^{j} - \sigma_{t}^{i} x_{t}^{i} .} $$
(D4)

The characteristic function \(v(S_{2}^{{}} ;t,x)\) is the maximized value of the payoff of coalition \(S_{2}^{{}}\) which is the solution to the problem

$$ \begin{aligned} & \mathop{\mathop{\mathop{\mathop{\max}\limits_{u_{\tau }^{i} ,v_{\tau }^{i(j)}}}\limits_{j \in K(i) \cap S_{2}}}\limits_{i \in S_{2}}}\limits_{\tau \in \{ t,t + 1, \cdots ,{\text{T}}\}} \left\{ {\sum\limits_{{i \in S_{2} }} {\left[ {\sum\limits_{\tau = t}^{T} {\left({\sum_{11111}} {p_{\tau }^{i(i)} (v_{\tau }^{i(i)} )^{{\alpha_{i} }} (x_{\tau }^{i} )^{{1 - \alpha_{i} }} - c_{\tau }^{i(i)} (v_{\tau }^{i(i)} ) - c_{\tau }^{i} (u_{\tau }^{i} )} \right.} } \right.} } \right. \\& + \left. {\sum\limits_{{j \in K(i) \cap S_{2} }}{\left( {p_{\tau }^{i(j)} (v_{\tau }^{i(j)} )^{{\varepsilon_{i} }} (\varpi_{\tau }^{i(j)} x_{\tau }^{j} )^{{(1 - \varepsilon_{i} )}} - c_{\tau }^{i(j)} (v_{\tau }^{i(j)} ) + \gamma_{\tau }^{i(j)} x_{t}^{i} } \right)} } \right)\delta_{1}^{\tau } \\& + \left. {\left. {\left( {q_{T + 1}^{i(i)} x_{T + 1}^{i} + M_{T + 1}^{i} } \right)\delta_{1}^{T + 1} } {\sum_{11111}}\right]} {\sum_{11111}}\right\} \end{aligned} $$
(D5)

s.t. state dynamics

$$ x_{t + 1}^{i} = x_{t}^{i} + a_{t}^{i} (u_{t}^{i} x_{t}^{i} )^{1/2} + \sum\limits_{{j \in K(i) \cap S_{2} }}^{{}} {\lambda_{t}^{i(j)} x_{t}^{j} - \sigma_{t}^{i} x_{t}^{i} .} $$
(D6)

Note that

(i) The payoff structure of coalition \(S_{1}^{{}} \cup S_{2}^{{}}\) exceeds the sum of the payoff structures of coalition \(S_{1}^{{}}\) and coalition \(S_{2}^{{}}\) by

$$\begin{gathered} \sum\limits_{\tau = 1}^{T} {\left( {\sum\limits_{{i \in S_{1} \cup S_{2} }} {\sum\limits_{{j \in K(i) \cap (S_{1} \cup S_{2} )}} {\left( {p_{\tau }^{i(j)} (v_{\tau }^{i(j)} )^{{\varepsilon_{i} }} (\varpi_{\tau }^{i(j)} x_{\tau }^{j} )^{{(1 - \varepsilon_{i} )}} - c_{\tau }^{i(j)} (v_{\tau }^{i(j)} ) + \gamma_{\tau }^{i(j)} x_{t}^{i} } \right)} } } \right)\delta_{1}^{\tau } } \hfill \\ - \left[ {\sum\limits_{\tau = 1}^{T} {\left( {\sum\limits_{{i \in S_{1} }} {\sum\limits_{{j \in K(i) \cap S_{1} }} {\left( {p_{\tau }^{i(j)} (v_{\tau }^{i(j)} )^{{\varepsilon_{i} }} (\varpi_{\tau }^{i(j)} x_{\tau }^{j} )^{{(1 - \varepsilon_{i} )}} - c_{\tau }^{i(j)} (v_{\tau }^{i(j)} ) + \gamma_{\tau }^{i(j)} x_{t}^{i} } \right)} } } \right)} \delta_{1}^{\tau } } \right. \hfill \\ + \left. {\sum\limits_{\tau = 1}^{T} {\left( {\sum\limits_{{i \in S_{2} }} {\sum\limits_{{j \in K(i) \cap S_{2} }} {\left( {p_{\tau }^{i(j)} (v_{\tau }^{i(j)} )^{{\varepsilon_{i} }} (\varpi_{\tau }^{i(j)} x_{\tau }^{j} )^{{(1 - \varepsilon_{i} )}} - c_{\tau }^{i(j)} (v_{\tau }^{i(j)} ) + \gamma_{\tau }^{i(j)} x_{t}^{i} } \right)} } } \right)} \;\delta_{1}^{\tau } } \right] \hfill \\ = \left[ {\sum\limits_{\tau = 1}^{T} {\left( {\sum\limits_{{i \in S_{1} }} {\sum\limits_{{j \in K(i) \cap S_{2} }} {\left( {p_{\tau }^{i(j)} (v_{\tau }^{i(j)} )^{{\varepsilon_{i} }} (\varpi_{\tau }^{i(j)} x_{\tau }^{j} )^{{(1 - \varepsilon_{i} )}} - c_{\tau }^{i(j)} (v_{\tau }^{i(j)} ) + \gamma_{\tau }^{i(j)} x_{t}^{i} } \right)} } } \right)} \;\delta_{1}^{\tau } } \right. \hfill \\ + \sum\limits_{\tau = 1}^{T} {\left. {\;\left( {\sum\limits_{{i \in S_{2} }} {\;\sum\limits_{{j \in K(i) \cap S_{1} }} {\left( {p_{\tau }^{i(j)} (v_{\tau }^{i(j)} )^{{\varepsilon_{i} }} (\varpi_{\tau }^{i(j)} x_{\tau }^{j} )^{{(1 - \varepsilon_{i} )}} - c_{\tau }^{i(j)} (v_{\tau }^{i(j)} ) + \gamma_{\tau }^{i(j)} x_{t}^{i} } \right)} } } \right)\delta_{1}^{\tau } } \right]} . \hfill \\ \end{gathered}$$
(D7)

(ii) the state dynamics of coalition \(S_{1}^{{}} \cup S_{2}^{{}}\) given in (D2) entail more technology spillover effects than the state dynamics of coalition \(S_{1}^{{}}\) and coalition \(S_{2}^{{}}\) in (D4) and (D6).

(iii) Hence the optimization scheme (D.1)-(D.2) would yield a higher payoff than the sum of payoffs from optimization (D.3)-(D.4) and optimization scheme (D5)-(D6).

Therefore, \(v(S_{1}^{{}} \cup S_{2}^{{}} ;t,x) \geqslant v(S_{1}^{{}} ;t,x) + v(S_{2}^{{}} ;t,x)\).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeung, D.W.K., Petrosyan, L.A. & Zhang, YX. A Dynamic Network Game of the Fintech Industry. J. Oper. Res. Soc. China 12, 5–33 (2024). https://doi.org/10.1007/s40305-022-00434-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40305-022-00434-4

Keywords

Mathematics Subject Classification

Profiles

  1. David W. K. Yeung