Abstract
The noise-induced transition of the augmented Lotka-Volterra system is investigated under vanishingly small noise. Populations will ultimately go extinct because of intrinsic noise, and different extinction routes may occur due to the Freidlin-Wentzell large deviation theory. The relation between the most probable extinction route (MPER) and heteroclinic bifurcation is studied in this paper. The MPERs and the quasi-potentials in different regimes of parameters are analyzed in detail. Before the bifurcation, the predator goes extinct, and the prey will survive for a long time. Then, the heteroclinic bifurcation changes the MPER wherein both species go extinct. The heteroclinic cycle plays a role in transferring the most probable extinction state. Moreover, the analyses of the weak noise limit can contribute to predicting the stochastic behavior under finite small noise. Both the heteroclinic bifurcation and the rotational deterministic vector field can reduce the action necessary for the MPER.

摘要
本文在几近于零的小噪声情况下研究了增广Lotka-Volterra系统的噪声诱导跃迁. 由于固有噪声的存在, 种群最终将灭绝, 而Freidlin-Wentzell大偏差理论可能导致不同的灭绝路径. 本文研究了最有可能灭绝路径(MPER)与异宿分岔的关系, 详细分析不同参数区间的MPER和准势. 在分岔之前, 捕食者灭绝, 猎物将存活很长时间. 然后, 异宿分岔改变了两个物种灭绝的MPER. 异宿环起着转移最有可能灭绝状态的作用. 此外, 弱噪声极限分析有助于预测有限小噪声下的随机行为. 异宿分岔和旋转确定性向量场都可以减少MPER所需的作用量.
Similar content being viewed by others
References
I. A. Khovanov, A. V. Polovinkin, D. G. Luchinsky, and P. V. E. McClintock, Noise-induced escape in an excitable system, Phys. Rev. E 87, 032116 (2013).
Z. Chen, J. Zhu, and X. Liu, Crossing the quasi-threshold manifold of a noise-driven excitable system, Proc. R. Soc. A. 473, 20170058 (2017).
A. Kamenev, and B. Meerson, Extinction of an infectious disease: A large fluctuation in a nonequilibrium system, Phys. Rev. E 77, 061107 (2008).
M. I. Dykman, I. B. Schwartz, and A. S. Landsman, Disease extinction in the presence of random vaccination, Phys. Rev. Lett. 101, 078101 (2008).
O. Gottesman, and B. Meerson, Multiple extinction routes in stochastic population models, Phys. Rev. E 85, 021140 (2012).
N. R. Smith, and B. Meerson, Extinction of oscillating populations, Phys. Rev. E 93, 032109 (2016).
Z. Chen, and X. Liu, Noise induced transitions and topological study of a periodically driven system, Commun. Nonlinear Sci. Numer. Simul. 48, 454 (2017).
Y. Li, J. Wang, and X. Liu, Quasi-threshold phenomenon in noise-driven Higgins model, Commun. Nonlinear Sci. Numer. Simul. 91, 105441 (2020).
L. Ryashko, Noise-induced complex oscillatory dynamics in the Zeldovich-Semenov model of a continuous stirred tank reactor, Chaos 31, 013105 (2021).
Y. Bomze, R. Hey, H. T. Grahn, and S. W. Teitsworth, Noise-induced current switching in semiconductor superlattices: observation of nonexponential kinetics in a high-dimensional system, Phys. Rev. Lett. 109, 026801 (2012).
M. I. Dykman, E. Mori, J. Ross, and P. M. Hunt, Large fluctuations and optimal paths in chemical kinetics, J. Chem. Phys. 100, 5735 (1994).
B. C. Nolting, and K. C. Abbott, Balls, cups, and quasi-potentials: quantifying stability in stochastic systems, Ecology 97, 850 (2016).
H. Li, Y. Xu, Y. Li, and R. Metzler, Transition path dynamics across rough inverted parabolic potential barrier, Eur. Phys. J. Plus 135, 731 (2020).
C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences (Springer, New York, 2004).
Z. Weiqiu, and C. Guoqiang, Nonlinear stochastic dynamics: A survey of recent developments, Acta Mech. Sin. 18, 551 (2002).
Q. F. Lü, W. Q. Zhu, and M. L. Deng, Reliability of quasi integrable and non-resonant Hamiltonian systems under fractional Gaussian noise excitation, Acta Mech. Sin. 36, 902 (2020).
M. I. Freidlin, and A. D. Wentzell, Random Perturbations of Dynamical Systems (Springer, New York, 2012).
M. Heymann, and E. Vanden-Eijnden, The geometric minimum action method: A least action principle on the space of curves, Comm. Pure Appl. Math. 61, 1052 (2008).
M. Cameron, Finding the quasipotential for nongradient SDEs, Phys. D 241, 1532 (2012).
D. Dahiya, and M. Cameron, Ordered line integral methods for computing the quasi-potential, J. Sci. Comput. 75, 1351 (2018).
D. Dahiya, and M. Cameron, An Ordered Line Integral Method for Computing the Quasi-potential in the case of Variable Anisotropic Diffusion, Phys. D-Nonlinear Phenomena 382–383, 33 (2018).
S. Yang, S. F. Potter, and M. K. Cameron, Computing the quasipotential for nongradient SDEs in 3D, J. Comput. Phys. 379, 325 (2018).
S. Beri, R. Mannella, D. G. Luchinsky, A. N. Silchenko, and P. V. E. McClintock, Solution of the boundary value problem for optimal escape in continuous stochastic systems and maps, Phys. Rev. E 72, 036131 (2005).
B. S. Lindley, and I. B. Schwartz, An iterative action minimizing method for computing optimal paths in stochastic dynamical systems, Phys. D-Nonlinear Phenomena 255, 22 (2013).
D. Ludwig, Persistence of dynamical systems under random perturbations, Siam Rev. 17, 605 (1975).
T. Grafke, and E. Vanden-Eijnden, Numerical computation of rare events via large deviation theory, Chaos 29, 063118 (2019).
M. Assaf, and B. Meerson, Extinction of metastable stochastic populations, Phys. Rev. E 81, 021116 (2010).
D. G. Schaeffer, and J. W. Cain, Ordinary Differential Equations: Basics and Beyond (Springer, New York, 2016).
W. E, and X. Zhou, Study of noise-induced transitions in the lorenz system using the minimum action method, Commun. Math. Sci. 8, 341 (2010).
E. Forgoston, and R. O. Moore, A primer on noise-induced transitions in applied dynamical systems, SIAM Rev. 60, 969 (2018).
R. S. Maier, and D. L. Stein, A scaling theory of bifurcations in the symmetric weak-noise escape problem, J Stat Phys 83, 291 (1996).
R.V. Roy, Asymptotic analysis of first-passage problems, Int. J. Nonlin. Mech. 32, 173 (1997).
N. Berglund, and B. Gentz, On the noise-induced passage through an unstable periodic orbit II: general case, SIAM J. Math. Anal. 46, 310 (2014).
R. de la Cruz, R. Perez-Carrasco, P. Guerrero, T. Alarcon, and K. M. Page, Minimum action path theory reveals the details of stochastic transitions out of oscillatory states, Phys. Rev. Lett. 120, 128102 (2018).
S. J. B. Einchcomb, and A. J. McKane, Use of Hamiltonian mechanics in systems driven by colored noise, Phys. Rev. E 51, 2974 (1995).
M. I. Dykman, Large fluctuations and fluctuational transitions in systems driven by colored Gaussian noise: A high-frequency noise, Phys. Rev. A 42, 2020 (1990).
H. Li, Y. Xu, R. Metzler, and J. Kurths, Transition path properties for one-dimensional systems driven by Poisson white noise, Chaos Solitons Fractals 141, 110293 (2020).
W. Zan, Y. Xu, R. Metzler, and J. Kurths, First-passage problem for stochastic differential equations with combined parametric Gaussian and Lévy white noises via path integral method, J. Comput. Phys. 435, 110264 (2021).
S. S. Pan, and W. Q. Zhu, Dynamics of a prey-predator system under Poisson white noise excitation, Acta Mech. Sin. 30, 739 (2014).
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported by the National Natural Science Foundation of China (Grant Nos. 11772149, and 12172167), A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and The Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (Grant No. MCMS-I-19G01).
Rights and permissions
About this article
Cite this article
Yu, Q., Li, Y. & Liu, X. On the extinction route of a stochastic population model under heteroclinic bifurcation. Acta Mech. Sin. 38, 221333 (2022). https://doi.org/10.1007/s10409-021-09062-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10409-021-09062-x