LAN Sihan, FENG Min. Phylogenetic Analyses of HPV53 and Prediction of B and T Cell Epitopes[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(6): 1364-1371. DOI: 10.12290/xhyxzz.2024-0138
Citation: LAN Sihan, FENG Min. Phylogenetic Analyses of HPV53 and Prediction of B and T Cell Epitopes[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(6): 1364-1371. DOI: 10.12290/xhyxzz.2024-0138

Phylogenetic Analyses of HPV53 and Prediction of B and T Cell Epitopes

Funds: 

the CAMS Initiative for Innovative Medicine 2021-I2M-1-004

the Program of Medical Discipline Leader in Yunnan Health System D-2019023

More Information
  • Corresponding author:

    FENG Min, E-mail: fengmin@imbcams.com.cn

  • Received Date: March 06, 2024
  • Accepted Date: April 16, 2024
  • Available Online: April 23, 2024
  • Publish Date: April 22, 2024
  • Issue Publish Date: November 29, 2024
  • Objective 

    To construct phylogenetic trees based on HPV53 full length sequences, and predict the physical and chemical parameters, secondary structure, B and T cell epitopes of HPV53 proteins(E1, E2, E4, E6, E7, L1, and L2).

    Methods 

    The full-length sequences of HPV53 variants were retrieved from the National Center for Biotechnology Information(NCBI), and a phylogenetic tree was constructed to delineate variant lineages. The physical and chemical parameters of HPV53 proteins were analyzed by ProtParam. The secondary structure of proteins was analyzed using PSIPRED and SOPMA. The B and T cell epitopes for HPV53 proteins were predicted by the IEDB analysis server and the ABCpred server, respectively. Then, to select the potential dominant B and T cell epitopes, more parameters including flexibility, hydrophilicity, surface accessibility, antigenicity of predicted B and T cell epitopes were further predicted by bioinformatic methods such as VaxiJen. Finally, for homology analysis, the potential dominant B and T cell epitopes were compared with the 13 high-risk HPV subtypes using NCBI BLAST tool.

    Results 

    A total of 54 full-length HPV53 sequences were retrieved from the NCBI database, with 48 entries remaining after deduplication. These 48 HPV53 isolates from different countries/regions were clustered into three main evolutionary branches labeled as lineages A, B, and C. The physicochemical properties of three different HPV53 variants(representing A, B, and C lineages, respectively) were similar. The secondary structure of the E1, E6, and E7 proteins was predominantly α-helices, while E2, E4, L1, and L2 predominantly exhibited random coils. After prediction and screening, a total of 6 potential B-cell epitopes and 9 potential T-cell epitopes were identified on HPV53 proteins. Among these epitopes, B cell epitopes TTPIRPPPPPRPWAPT in E4 region, CYRCQHPLTPEEKQLH in E6 region, and T cell epitopes SGVHSYEEIPMQ in L2 region showed high homologous to HPV56(all > 90%).

    Conclusions 

    Bioinformatics analysis and prediction revealed that HPV53 isolates could be clustered into three main evolutionary branches labeled as A, B, and C. These branches exhibited similar physicochemical properties, with minor differences in their secondary structure. Moreover, HPV53 viral proteins contained both B-cell and T-cell antigenic epitopes. These results lay the foundation for further research on vaccines and drugs based on HPV53-related peptides.

  • [1]
    McBride A A. Human papillomaviruses: diversity, infection and host interactions[J]. Nat Rev Microbiol, 2022, 20(2): 95-108. DOI: 10.1038/s41579-021-00617-5
    [2]
    中华医学会妇科肿瘤学分会, 中国优生科学协会阴道镜和宫颈病理学分会. 人乳头瘤病毒疫苗临床应用中国专家共识[J]. 协和医学杂志, 2021, 12(2): 189-201.

    Gynecological Oncology Society of Chinese Medical Association, Chinese Society for Colposcopy and Cervical Pathology. Chinese expert consensus on clinical application of human papilloma virus vaccine[J]. Med J PUMCH, 2021, 12(2): 189-201.
    [3]
    Eberhardt C S, Kissick H T, Patel M R, et al. Functional HPV-specific PD-1+ stem-like CD8 T cells in head and neck cancer[J]. Nature, 2021, 597(7875): 279-284. DOI: 10.1038/s41586-021-03862-z
    [4]
    Manga S M, Ye Y F, Nulah K L, et al. Human papillomavirus types and cervical cancer screening among female sex workers in Cameroon[J]. Cancers (Basel), 2024, 16(2): 243. DOI: 10.3390/cancers16020243
    [5]
    Chen L, Dong Y, Li J, et al. The genomic distribution map of human papillomavirus in Western China[J]. Epidemiol Infect, 2021, 149: e135. DOI: 10.1017/S0950268821001175
    [6]
    Zeng Z Y, Austin R M, Wang L, et al. Nationwide prevalence and genotype distribution of high-risk human papillomavirus infection in China[J]. Am J Clin Pathol, 2022, 157(5): 718-723. DOI: 10.1093/ajcp/aqab181
    [7]
    Zhang J Y, Cheng K Y, Wang Z L. Prevalence and distribution of human papillomavirus genotypes in cervical intraepithelial neoplasia in China: a meta-analysis[J]. Arch Gynecol Obstet, 2020, 302(6): 1329-1337. DOI: 10.1007/s00404-020-05787-w
    [8]
    Liu L H, Wang D X, Dong H X, et al. Characteristics of carcinogenic HPV genotypes in North China Plain and the association with cervical lesions[J]. Medicine (Baltimore), 2019, 98(37): e17087. DOI: 10.1097/MD.0000000000017087
    [9]
    Ma M J, Zhu J F, Yang Y B, et al. The distribution and pathogenic risk of non-9-valent vaccine covered HPV subtypes in cervical lesions[J]. Cancer Med, 2022, 11(6): 1542-1552. DOI: 10.1002/cam4.4532
    [10]
    Harden M E, Munger K. Human papillomavirus molecular biology[J]. Mutat Res Rev Mutat Res, 2017, 772: 3-12. DOI: 10.1016/j.mrrev.2016.07.002
    [11]
    Della Fera A N, Warburton A, Coursey T L, et al. Persistent human papillomavirus infection[J]. Viruses, 2021, 13(2): 321. DOI: 10.3390/v13020321
    [12]
    McBride A A. Mechanisms and strategies of papillomavirus replication[J]. Biol Chem, 2017, 398(8): 919-927. DOI: 10.1515/hsz-2017-0113
    [13]
    Bernard H U. Regulatory elements in the viral genome[J]. Virology (Lond), 2013, 445(1/2): 197-204.
    [14]
    Letunic I, Bork P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation[J]. Nucleic Acids Res, 2021, 49(W1): W293-W296. DOI: 10.1093/nar/gkab301
    [15]
    吴玉章, 朱锡华. 一种病毒蛋白B细胞表位预测方法的建立[J]. 科学通报, 1994, 39(24): 2275-2279.

    Wu Y Z, Zhu X H. Establishment of a virus protein B cell epitope prediction method[J]. Chin Sci Bull, 1994, 39(24): 2275-2279.
    [16]
    He J Y, Yang Y S, Chen Z Y, et al. Identification of variants and therapeutic epitopes in HPV-33/HPV-58 E6 and E7 in Southwest China[J]. Virol J, 2019, 16(1): 72. DOI: 10.1186/s12985-019-1168-y
    [17]
    Burk R D, Harari A, Chen Z G. Human papillomavirus genome variants[J]. Virology, 2013, 445(1/2): 232-243.
    [18]
    Chen Z G, Schiffman M, Herrero R, et al. Evolution and taxonomic classification of human papillomavirus 16 (HPV16)-related variant genomes: HPV31, HPV33, HPV35, HPV52, HPV58 and HPV67[J]. PLoS One, 2011, 6(5): e20183. DOI: 10.1371/journal.pone.0020183
    [19]
    Sung H, Ferlay J, Siegel R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660
    [20]
    Anon. Estimated numbers (incidence and mortality) of cancer of cervix uteri from 2020 to 2040, females, age[0-85+ ], China[DB/OL]. [2024-03-05]. https://gco.iarc.fr/tomorrow/en/dataviz/trends?mode=cancer&types=0_1&group_populations=0&multiple_populations=0&multiple_cancers=1&sexes=2&cancers=23&populations=160.
    [21]
    Cao M, Chenzhang Y W, Ding X P, et al. Genetic variability and lineage phylogeny of human papillomavirus type-16 and -53 based on the E6, E7, and L1 genes in Southwest China[J]. Gene, 2016, 592(1): 49-59. DOI: 10.1016/j.gene.2016.07.039
    [22]
    Mariz F C, Putzker K, Sehr P, et al. Advances on two serological assays for human papillomavirus provide insights on the reactivity of antibodies against a cross-neutralization epitope of the minor capsid protein L2[J]. Front Immunol, 2023, 14: 1272018. DOI: 10.3389/fimmu.2023.1272018
    [23]
    Olczak P, Roden R B S. Progress in L2-based prophylactic vaccine development for protection against diverse human papillomavirus genotypes and associated diseases[J]. Vaccines (Basel), 2020, 8(4): 568. DOI: 10.3390/vaccines8040568
    [24]
    Kadaja M, Isok-Paas H, Laos T, et al. Mechanism of genomic instability in cells infected with the high-risk human papillomaviruses[J]. PLoS Pathog, 2009, 5(4): e1000397. DOI: 10.1371/journal.ppat.10003974
    [25]
    Doorbar J. The E4 protein; structure, function and patterns of expression[J]. Virology, 2013, 445(1/2): 80-98.
    [26]
    Bravo I G, Alonso A. Mucosal human papillomaviruses encode four different E5 proteins whose chemistry and phylogeny correlate with malignant or benign growth[J]. J Virol, 2004, 78(24): 13613-13626. DOI: 10.1128/JVI.78.24.13613-13626.2004
    [27]
    Schiffman M, Herrero R, Desalle R, et al. The carcinogenicity of human papillomavirus types reflects viral evolution[J]. Virology, 2005, 337(1): 76-84. DOI: 10.1016/j.virol.2005.04.002
    [28]
    McInnis C, Bhatia S, Vijaykumar B, et al. Identification of HPV16 E1 and E2-specific T cells in the oropharyngeal cancer tumor microenvironment[J]. J Immunother Cancer, 2023, 11(3): e006721. DOI: 10.1136/jitc-2023-006721
  • Related Articles

    [1]YU Jiawen, LIU Hongju, XU Yingying, BAO Yanping, SHI Jie, LIU Zhimin, ZHANG Yuelun, NING Xiaohong, HUANG Yuguang. Cognition of Palliative Care and Experience of Palliative Sedation in Chinese Anesthesiologists: A National Cross-sectional Survey[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 77-83. DOI: 10.12290/xhyxzz.2023-0158
    [2]WANG Bo, JIANG Wei, LUO Yuping. Talking About Palliative Care Recipients From the Perspective of Promoting Living Wills[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 42-44. DOI: 10.12290/xhyxzz.2023-0617
    [3]YU Shiying. Controversies About Palliative Care[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 37-41. DOI: 10.12290/xhyxzz.2023-0537
    [4]GAO Shan. The Reversal of Policy Environment and Operation Mechanism of Palliative Care Service[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 32-36. DOI: 10.12290/xhyxzz.2023-0633
    [5]ZHANG Di, BI Kejia, XU Shiting. Ethical Issues in Palliative Care[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 24-31. DOI: 10.12290/xhyxzz.2023-0578
    [6]NING Xiaohong, YAN Ge. China's Healthcare System Urgently Needs the Integration of Palliative Care[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 12-17. DOI: 10.12290/xhyxzz.2023-0599
    [7]Krakauer Eric L.. How to Respond Responsibly to Suffering of Others? Rethinking Palliative Care for China[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 7-11. DOI: 10.12290/xhyxzz.2023-0613
    [8]SUN Yan. Palliative Care: From the Perspective of Clinical Oncology[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 3-6. DOI: 10.12290/xhyxzz.2023-0521
    [9]LANG Jinghe. Palliative Care: Understanding and Responsibility[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 1-2. DOI: 10.12290/xhyxzz.2023-0469
    [10]ZHANG Hui, YANG Wei, CUI Ying, GUAN Yu-xia, ZHOU Zi-juan. Qualitative study on palliative care needs of peritoneal dialysis patients and caregivers[J]. Medical Journal of Peking Union Medical College Hospital. DOI: 10.12290/xhyxzz.2024-0290
  • Cited by

    Periodical cited type(28)

    1. 李妍,韩彤昕,毛华伟. 线上与线下医学人文教学结合应用的研究与探索. 中国继续医学教育. 2025(01): 185-188 .
    2. 李研,赵琳琳. 英美医学教育中戏剧元素的人文透视. 中国医学伦理学. 2025(03): 385-391 .
    3. 张慧颖,王锦帆,马宇昊,何源. 新时代中国医学人文研究热点及趋势探析. 中国医学伦理学. 2025(03): 336-345 .
    4. 王红宇,刘金强,丁俊杰,王红,孟志剑,唐聚花,张思森. 医患沟通技能培训在急重症医学住院医生规培中的应用. 中国现代医生. 2024(02): 74-76 .
    5. 向琳,王浩辰,黄天宇,何鲲. 基于“医教研德”复合型人才培养模式口腔种植学教学改革思考与探索. 中国医药导报. 2024(04): 70-73 .
    6. 俞婧,王瑞,武云. 基于VOSviewer的我国叙事医学相关文献的可视化分析及启示. 中国毕业后医学教育. 2024(03): 207-213 .
    7. 余航,安琪,金李,吴远,陈涛,肖懿慧. BOPPPS教学模式融合课程思政在本科生内科学见习中的应用. 医学教育研究与实践. 2024(03): 349-354 .
    8. 周殷华,程瑜,崔昌杰,田晓辉,符隆文,方婵,廖晓星,陈起坤. 医文融合视域下临床医学人文教学体系研究. 中国医学伦理学. 2024(07): 860-866 .
    9. 王京,贺欢欣,董智瑞,董健,赵明东. 住培医师人文素养的培育. 中国继续医学教育. 2024(20): 186-189 .
    10. 敖玲敏,沈菊. 中华优秀传统文化融入大学生心理健康教育的价值之维与实践之路. 黑龙江高教研究. 2024(12): 120-126 .
    11. 王倩,巩红,刘昌,李雁,李研,辛娟,张月浪. 以临床人文岗位胜任力为导向的医学人文多元教育渠道的探索. 医学教育研究与实践. 2023(01): 68-72 .
    12. 徐燕玲,顾漪. 临床医师医学人文认知现状调查. 中国现代医生. 2023(05): 135-138 .
    13. 冯悦,庞维,郑丽,李胜军,孙逊,冯辉. 新医科和新文科交叉融合对免疫学创新人才培养的探索性改革. 中国免疫学杂志. 2023(06): 1203-1206 .
    14. 柳舟,张亮,王璐,朱睿瑶,王慧娟,张静,雷佳羲,詹丽英. 重症医学科医学人文素质教育的改革与实践. 中国继续医学教育. 2023(12): 10-14 .
    15. 阳磊,彭蓓,张婉丽. 口腔科住院医师规范化培训医学人文教育改革实践. 经济研究导刊. 2023(12): 123-125 .
    16. 赵娟,徐斌. 进修医师自身免疫性肝炎临床带教体会. 继续医学教育. 2023(06): 129-132 .
    17. 刘琴,何自强,骆佳佳,冯凯娜. 以提升人文关怀能力为导向的护理学导论教学模式应用研究. 沈阳医学院学报. 2023(05): 540-543 .
    18. 谢佳君,何勇涛,黄国琼,秦宇彤,王方芳,栗昕,黄春基. 立德树人背景下医学生德育素质培养研究. 中国社会医学杂志. 2023(05): 540-543 .
    19. 吕晓龙,严旭,章涵. 以强化人文素养为导向的全科医学生叙事医学课程模式构建. 济源职业技术学院学报. 2023(04): 33-37 .
    20. 吕少春,宋汉君,栾海艳,何穆涵. 基于医学模拟教学的医学生临床能力培养研究. 医学教育研究与实践. 2022(03): 294-297 .
    21. 李超. 培养高素质临床医生路径分析. 继续医学教育. 2022(04): 61-64 .
    22. 冯矗,陈飞,张树霞,刘古月,李晓宇. 医学人文关怀教育融入外科实习的实践探索. 中医药管理杂志. 2022(11): 88-90 .
    23. 高铭,韩涛,池靖涵,杜振兰,杨常栓,侯豫,花少栋. 创新互动式医学人文教育在儿科住院医师规范化培训中的作用研究. 中国医学伦理学. 2022(07): 806-810 .
    24. 胡艳超,王洪涛,王怡雯,周戬平. 医学人文教育在心血管内科混合式教学中的应用. 医学教育研究与实践. 2022(05): 648-652 .
    25. 叶榆莹. 英语电影字幕翻译对医学生人文教育的作用探究. 才智. 2022(33): 62-65 .
    26. 陶庆才. 抗疫精神融入医学院校课程思政的研究与实践. 浙江医学教育. 2022(05): 268-270+299 .
    27. 张宏伟,熊梓彤,林芷伊. 英国医学人文关怀及其医学教育启示. 农垦医学. 2022(06): 561-564 .
    28. 祝贺,敖俊红,杨蓉娅,李海涛. 全媒体时代医学摄影的边界教育在皮肤病与性病科临床教学中的意义. 实用皮肤病学杂志. 2022(06): 367-369 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (369) PDF downloads (36) Cited by(34)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close