SHEN Tian, WU Xiaochuan. Systemic Lupus Erythematosus: from Pathogenesis to New Targeted Therapies[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 234-240. DOI: 10.12290/xhyxzz.2022-0694
Citation: SHEN Tian, WU Xiaochuan. Systemic Lupus Erythematosus: from Pathogenesis to New Targeted Therapies[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 234-240. DOI: 10.12290/xhyxzz.2022-0694

Systemic Lupus Erythematosus: from Pathogenesis to New Targeted Therapies

Funds: 

National Key Research and Development Program of China 2021YFC2702004

National Natural Science Foundation of China Youth Project 82101905

More Information
  • Corresponding author:

    WU Xiaochuan, E-mail: xiaochuanwu@csu.edu.cn

  • Received Date: December 04, 2022
  • Accepted Date: March 01, 2023
  • Available Online: March 11, 2023
  • Issue Publish Date: March 29, 2023
  • Systemic lupus erythematosus (SLE) is an autoimmune disease that affects multiple organs or systems. The etiology of SLE is complex, involving molecular genetics, epigenetics, innate immunity, acquired immunity, race, hormone and environmental factors. Recent progress in fine immunophenotyping, GWAS, single cell sequencing and multiomics analysis has enabled a deeper understanding of the pathogenesis of SLE. Various monoclonal antibodies or small molecule drugs targeting immune cells, costimulatory molecules, cytokines or signal transduction pathways, and CART cell immunotherapy have been developed or even applied in clinical treatment. The approval of belizumab, telitacicept, anifrolumab and voclosporin for SLE has given clinicians, researchers and patients greater confidence and more treatment options for patients with moderate to severe SLE, especially those with refractory SLE.
  • [1]
    Unlu B, Tursen U, Jabalameli N, et al. Immunogenetics of Lupus Erythematosus[J]. Adv Exp Med Biol, 2022, 1367: 213-257.
    [2]
    Wang YF, Zhang Y, Lin Z, et al. Identification of 38 novel loci for systemic lupus erythematosus and genetic heterogeneity between ancestral groups[J]. Nat Commun, 2021, 12: 772. DOI: 10.1038/s41467-021-21049-y
    [3]
    Wang M, Peng Y, Li H, et al. From monogenic lupus to TLR7/MyD88-targeted therapy[J]. Innovation (Camb), 2022, 3: 100299.
    [4]
    Shi F, Xue R, Zhou X, et al. Telitacicept as a BLyS/APRIL dual inhibitor for autoimmune disease[J]. Immunopharmacol Immunotoxicol, 2021, 43: 666-673. DOI: 10.1080/08923973.2021.1973493
    [5]
    Parra Sanchez AR, Voskuyl AE, van Vollenhoven RF. Treat-to-target in systemic lupus erythematosus: advancing towards its implementation[J]. Nat Rev Rheumatol, 2022, 18: 146-157. DOI: 10.1038/s41584-021-00739-3
    [6]
    Ameer MA, Chaudhry H, Mushtaq J, et al. An Overview of Systemic Lupus Erythematosus (SLE) Pathogenesis, Classification, and Management[J]. Cureus, 2022, 14: e30330.
    [7]
    Gordon RE, Nemeth JF, Singh S, et al. Harnessing SLE Autoantibodies for Intracellular Delivery of Biologic Therapeutics[J]. Trends Biotechnol, 2021, 39: 298-310. DOI: 10.1016/j.tibtech.2020.07.003
    [8]
    Stohl W, Schwarting A, Okada M, et al. Efficacy and Safety of Subcutaneous Belimumab in Systemic Lupus Erythematosus: A Fifty-Two-Week Randomized, Double-Blind, Placebo-Controlled Study[J]. Arthritis Rheumatol, 2017, 69: 1016-1027. DOI: 10.1002/art.40049
    [9]
    Steri M, Orru V, Idda ML, et al. Overexpression of the Cytokine BAFF and Autoimmunity Risk[J]. N Engl J Med, 2017, 376: 1615-1626. DOI: 10.1056/NEJMoa1610528
    [10]
    Raupov RK, Suspitsin EN, Imelbaev AI, et al. Simul-taneous Onset of Pediatric Systemic Lupus Erythematosus in Twin Brothers: Case Report[J]. Front Pediatr, 2022, 10: 929358. DOI: 10.3389/fped.2022.929358
    [11]
    Marion MC, Ramos PS, Bachali P, et al. Nucleic Acid-Sensing and Interferon-Inducible Pathways Show Differential Methylation in MZ Twins Discordant for Lupus and Overexpression in Independent Lupus Samples: Implications for Pathogenic Mechanism and Drug Targeting[J]. Genes (Basel), 2021, 12: 1898. DOI: 10.3390/genes12121898
    [12]
    Breitbach ME, Ramaker RC, Roberts K, et al. Population-Specific Patterns of Epigenetic Defects in the B Cell Lineage in Patients With Systemic Lupus Erythematosus[J]. Arthritis Rheumatol, 2020, 72: 282-291. DOI: 10.1002/art.41083
    [13]
    Hu N, Qiu X, Luo Y, et al. Abnormal histone modification patterns in lupus CD4+ T cells[J]. J Rheumatol, 2008, 35: 804-810.
    [14]
    Gautam P, Sharma A, Bhatnagar A. Global histone modification analysis reveals hypoacetylated H3 and H4 histones in B Cells from systemic lupus erythematosus patients[J]. Immunol Lett, 2021, 240: 41-45. DOI: 10.1016/j.imlet.2021.09.007
    [15]
    Wardowska A, Komorniczak M, Bullo-Piontecka B, et al. Transcriptomic and Epigenetic Alterations in Dendritic Cells Correspond With Chronic Kidney Disease in Lupus Nephritis[J]. Front Immunol, 2019, 10: 2026. DOI: 10.3389/fimmu.2019.02026
    [16]
    Pyfrom S, Paneru B, Knox JJ, et al. The dynamic epigenetic regulation of the inactive X chromosome in healthy human B cells is dysregulated in lupus patients[J]. Proc Natl Acad Sci U S A, 2021, 118: e2024624118. DOI: 10.1073/pnas.2024624118
    [17]
    Zhang Q, Liang Y, Yuan H, et al. Integrated analysis of lncRNA, miRNA and mRNA expression profiling in patients with systemic lupus erythematosus[J]. Arch Med Sci, 2019, 15: 872-879. DOI: 10.5114/aoms.2018.79145
    [18]
    Alsheikh AJ, Wollenhaupt S, King EA, et al. The landscape of GWAS validation; systematic review identifying 309 validated non-coding variants across 130 human diseases[J]. BMC Med Genomics, 2022, 15: 74. DOI: 10.1186/s12920-022-01216-w
    [19]
    Hiramatsu-Asano S, Wada J. Therapeutic Approaches Targeting miRNA in Systemic Lupus Erythematosus[J]. Acta Med Okayama, 2022, 76: 359-371.
    [20]
    Psarras A, Wittmann M, Vital EM. Emerging concepts of type I interferons in SLE pathogenesis and therapy[J]. Nat Rev Rheumatol, 2022, 18: 575-590.
    [21]
    Farkas L, Beiske K, Lund-Johansen F, et al. Plasmacytoid dendritic cells (natural interferon-alpha/beta-producing cells) accumulate in cutaneous lupus erythematosus lesions[J]. Am J Pathol, 2001, 159: 237-243. DOI: 10.1016/S0002-9440(10)61689-6
    [22]
    Rowland SL, Riggs JM, Gilfillan S, et al. Early, transient depletion of plasmacytoid dendritic cells ameliorates autoimmunity in a lupus model[J]. J Exp Med, 2014, 211: 1977-1991. DOI: 10.1084/jem.20132620
    [23]
    Klopp-Schulze L, Shaw JV, Dong JQ, et al. Applying Modeling and Simulations for Rational Dose Selection of Novel Toll-Like Receptor 7/8 Inhibitor Enpatoran for Indications of High Medical Need[J]. Clin Pharmacol Ther, 2022, 112: 297-306. DOI: 10.1002/cpt.2606
    [24]
    Alunno A, Padjen I, Fanouriakis A, et al. Pathogenic and Therapeutic Relevance of JAK/STAT Signaling in Systemic Lupus Erythematosus: Integration of Distinct Inflammatory Pathways and the Prospect of Their Inhibition with an Oral Agent[J]. Cells, 2019, 8: 898. DOI: 10.3390/cells8080898
    [25]
    Furie RA, van Vollenhoven RF, Kalunian K, et al. Trial of Anti-BDCA2 Antibody Litifilimab for Systemic Lupus Erythematosus[J]. N Engl J Med, 2022, 387: 894-904. DOI: 10.1056/NEJMoa2118025
    [26]
    Kishimoto D, Kirino Y, Tamura M, et al. Dysregulated heme oxygenase-1(low) M2-like macrophages augment lupus nephritis via Bach1 induced by type I interferons[J]. Arthritis Res Ther, 2018, 20: 64. DOI: 10.1186/s13075-018-1568-1
    [27]
    Willemsen L, de Winther MP. Macrophage subsets in atherosclerosis as defined by single-cell technologies[J]. J Pathol, 2020, 250: 705-714. DOI: 10.1002/path.5392
    [28]
    Ahamada MM, Jia Y, Wu X. Macrophage Polarization and Plasticity in Systemic Lupus Erythematosus[J]. Front Immunol, 2021, 12: 734008. DOI: 10.3389/fimmu.2021.734008
    [29]
    Kucuksezer UC, Aktas Cetin E, Esen F, et al. The Role of Natural Killer Cells in Autoimmune Diseases[J]. Front Immunol, 2021, 12: 622306. DOI: 10.3389/fimmu.2021.622306
    [30]
    Carmona-Rivera C, Kaplan MJ. Low-density granulocytes in systemic autoimmunity and autoinflammation[J]. Immunol Rev, 2022. doi: 10.1111/imr.13161.
    [31]
    Bolouri N, Akhtari M, Farhadi E, et al. Role of the innate and adaptive immune responses in the pathogenesis of systemic lupus erythematosus[J]. Inflamm Res, 2022, 71: 537-554. DOI: 10.1007/s00011-022-01554-6
    [32]
    Chen PM, Tsokos GC. T Cell Abnormalities in the Pathogenesis of Systemic Lupus Erythematosus: an Update[J]. Curr Rheumatol Rep, 2021, 23: 12. DOI: 10.1007/s11926-020-00978-5
    [33]
    Furie RA, Bruce IN, Dorner T, et al. Phase 2, rando-mized, placebo-controlled trial of dapirolizumab pegol in patients with moderate-to-severe active systemic lupus erythematosus[J]. Rheumatology (Oxford), 2021, 60: 5397-5407. DOI: 10.1093/rheumatology/keab381
    [34]
    Shan J, Jin H, Xu Y. T Cell Metabolism: A New Perspective on Th17/Treg Cell Imbalance in Systemic Lupus Erythematosus[J]. Front Immunol, 2020, 11: 1027. DOI: 10.3389/fimmu.2020.01027
    [35]
    He J, Zhang R, Shao M, et al. Efficacy and safety of low-dose IL-2 in the treatment of systemic lupus erythematosus: a randomised, double-blind, placebo-controlled trial[J]. Ann Rheum Dis, 2020, 79: 141-149.
    [36]
    Lai ZW, Kelly R, Winans T, et al. Sirolimus in patients with clinically active systemic lupus erythematosus resistant to, or intolerant of, conventional medications: a single-arm, open-label, phase 1/2 trial[J]. Lancet, 2018, 391: 1186-1196. DOI: 10.1016/S0140-6736(18)30485-9
    [37]
    Guillonneau C, Aubry V, Renaudin K, et al. Inhibition of chronic rejection and development of tolerogenic T cells after ICOS-ICOSL and CD40-CD40L co-stimulation blockade[J]. Transplantation, 2005, 80: 546-554.
    [38]
    Zhang J, Guo Q, Dai D, et al. Rapamycin-encapsulated costimulatory ICOS/CD40L-bispecific nanoparticles restrict pathogenic helper T-B-cell interactions while in situ suppressing mTOR for lupus treatment[J]. Biomaterials, 2022, 289: 121766. DOI: 10.1016/j.biomaterials.2022.121766
    [39]
    Radziszewska A, Moulder Z, Jury EC, et al. CD8(+) T Cell Phenotype and Function in Childhood and Adult-Onset Connective Tissue Disease[J]. Int J Mol Sci, 2022, 23: 11431. DOI: 10.3390/ijms231911431
    [40]
    Perez RK, Gordon MG, Subramaniam M, et al. Single-cell RNA-seq reveals cell type-specific molecular and genetic associations to lupus[J]. Science, 2022, 376: eabf1970. DOI: 10.1126/science.abf1970
    [41]
    Lou H, Ling GS, Cao X. Autoantibodies in systemic lupus erythematosus: From immunopathology to therapeutic target[J]. J Autoimmun, 2022, 132: 102861. DOI: 10.1016/j.jaut.2022.102861
    [42]
    Jenks SA, Cashman KS, Zumaquero E, et al. Distinct Effector B Cells Induced by Unregulated Toll-like Receptor 7 Contribute to Pathogenic Responses in Systemic Lupus Erythematosus[J]. Immunity, 2018, 49: 725-739. e6. DOI: 10.1016/j.immuni.2018.08.015
    [43]
    Phalke S, Rivera-Correa J, Jenkins D, et al. Molecular mechanisms controlling age-associated B cells in autoim-munity[J]. Immunol Rev, 2022, 307: 79-100. DOI: 10.1111/imr.13068
    [44]
    Matsushita T. Regulatory and effector B cells: Friends or foes?[J]. J Dermatol Sci, 2019, 93: 2-7. DOI: 10.1016/j.jdermsci.2018.11.008
    [45]
    Mougiakakos D, Kronke G, Volkl S, et al. CD19-Targeted CAR T Cells in Refractory Systemic Lupus Erythematosus[J]. N Engl J Med, 2021, 385: 567-569. DOI: 10.1056/NEJMc2107725
    [46]
    Mackensen A, Muller F, Mougiakakos D, et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus[J]. Nat Med, 2022, 28: 2124-2132. DOI: 10.1038/s41591-022-02017-5
    [47]
    Zhang W, Feng J, Cinquina A, et al. Treatment of Systemic Lupus Erythematosus using BCMA-CD19 Compound CAR[J]. Stem Cell Rev Rep, 2021, 17: 2120-2123. DOI: 10.1007/s12015-021-10251-6
    [48]
    Oh S, Mao X, Manfredo-Vieira S, et al. Precision targeting of autoantigen-specific B cells in muscle-specific tyrosine kinase myasthenia gravis with chimeric autoantibody receptor T cells[J]. Nat Biotechnol, 2023. doi: 10.1038/s41587-022-01637-z.
  • Related Articles

    [1]WANG Qi, CHEN Miao. Advances in Immunotargeted Therapy for Warm Autoimmune Hemolytic Anemia[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(2): 423-430. DOI: 10.12290/xhyxzz.2024-0668
    [2]WANG Jun, MENG Juan. Targeted Therapy for Rheumatoid Arthritis in the New Era[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(1): 19-27. DOI: 10.12290/xhyxzz.2024-0842
    [3]QIN Jing, ZHU Qingli. Early Efficacy Assessment of Targeted Therapy for Crohn's Disease by Ultrasound[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 130-134. DOI: 10.12290/xhyxzz.2023-0306
    [4]LIN Meijia, ZENG Yeting, WANG Xinrui, HUANG Xiongfei. Research Progress of Isocitrate Dehydrogenase Gene Mutation Therapy[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 346-352. DOI: 10.12290/xhyxzz.2022-0176
    [5]LI Guo-yu, HE Ming. Research Progress of Targeted Therapy at Rare Targets for Non-small Cell Lung Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(2): 268-274. DOI: 10.3969/j.issn.1674-9081.2020.00.019
    [6]Hua-xia YANG, Feng-chun ZHANG. New Biologic Targets for Systemic Lupus Erythematosus: Hope and Challenge[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(3): 241-246. DOI: 10.3969/j.issn.1674-9081.20200091
    [7]Ying XU, Yan LIN, Chang-jun WANG, Jia-lin ZHAO, Qiang SUN. Whether Elderly Patients with Her-2 Positive Breast Cancer but Without Heart Disease Should Receive Targeted Therapy?[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(4): 414-418. DOI: 10.3969/j.issn.1674-9081.2019.04.020
    [8]Xi-nan SHENG, Jun GUO. Current Status and Prospects of the Treatment of Advanced Renal Carcinoma[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(2): 148-151. DOI: 10.3969/j.issn.1674-9081.2019.02.012
    [9]Su-jie ZHANG, Hua-qi YIN, Xiong-jun YE, Tao XU. Role of Musashi-2 in the Occurrence and Development and as the Diagnostic and Therapeutic Target of Malignant Tumors[J]. Medical Journal of Peking Union Medical College Hospital, 2017, 8(4-5): 289-293. DOI: 10.3969/j.issn.1674-9081.2017.05.018
    [10]Lei TANG, Hua-dan XUE, Zheng-yu JIN. Radiological Evaluation of the Response of Abdominal Tumors to Targeted Therapy: Current Status and Prospect[J]. Medical Journal of Peking Union Medical College Hospital, 2017, 8(2-3): 82-89. DOI: 10.3969/j.issn.1674-9081.2017.03.001
  • Cited by

    Periodical cited type(28)

    1. 李妍,韩彤昕,毛华伟. 线上与线下医学人文教学结合应用的研究与探索. 中国继续医学教育. 2025(01): 185-188 .
    2. 李研,赵琳琳. 英美医学教育中戏剧元素的人文透视. 中国医学伦理学. 2025(03): 385-391 .
    3. 张慧颖,王锦帆,马宇昊,何源. 新时代中国医学人文研究热点及趋势探析. 中国医学伦理学. 2025(03): 336-345 .
    4. 王红宇,刘金强,丁俊杰,王红,孟志剑,唐聚花,张思森. 医患沟通技能培训在急重症医学住院医生规培中的应用. 中国现代医生. 2024(02): 74-76 .
    5. 向琳,王浩辰,黄天宇,何鲲. 基于“医教研德”复合型人才培养模式口腔种植学教学改革思考与探索. 中国医药导报. 2024(04): 70-73 .
    6. 俞婧,王瑞,武云. 基于VOSviewer的我国叙事医学相关文献的可视化分析及启示. 中国毕业后医学教育. 2024(03): 207-213 .
    7. 余航,安琪,金李,吴远,陈涛,肖懿慧. BOPPPS教学模式融合课程思政在本科生内科学见习中的应用. 医学教育研究与实践. 2024(03): 349-354 .
    8. 周殷华,程瑜,崔昌杰,田晓辉,符隆文,方婵,廖晓星,陈起坤. 医文融合视域下临床医学人文教学体系研究. 中国医学伦理学. 2024(07): 860-866 .
    9. 王京,贺欢欣,董智瑞,董健,赵明东. 住培医师人文素养的培育. 中国继续医学教育. 2024(20): 186-189 .
    10. 敖玲敏,沈菊. 中华优秀传统文化融入大学生心理健康教育的价值之维与实践之路. 黑龙江高教研究. 2024(12): 120-126 .
    11. 王倩,巩红,刘昌,李雁,李研,辛娟,张月浪. 以临床人文岗位胜任力为导向的医学人文多元教育渠道的探索. 医学教育研究与实践. 2023(01): 68-72 .
    12. 徐燕玲,顾漪. 临床医师医学人文认知现状调查. 中国现代医生. 2023(05): 135-138 .
    13. 冯悦,庞维,郑丽,李胜军,孙逊,冯辉. 新医科和新文科交叉融合对免疫学创新人才培养的探索性改革. 中国免疫学杂志. 2023(06): 1203-1206 .
    14. 柳舟,张亮,王璐,朱睿瑶,王慧娟,张静,雷佳羲,詹丽英. 重症医学科医学人文素质教育的改革与实践. 中国继续医学教育. 2023(12): 10-14 .
    15. 阳磊,彭蓓,张婉丽. 口腔科住院医师规范化培训医学人文教育改革实践. 经济研究导刊. 2023(12): 123-125 .
    16. 赵娟,徐斌. 进修医师自身免疫性肝炎临床带教体会. 继续医学教育. 2023(06): 129-132 .
    17. 刘琴,何自强,骆佳佳,冯凯娜. 以提升人文关怀能力为导向的护理学导论教学模式应用研究. 沈阳医学院学报. 2023(05): 540-543 .
    18. 谢佳君,何勇涛,黄国琼,秦宇彤,王方芳,栗昕,黄春基. 立德树人背景下医学生德育素质培养研究. 中国社会医学杂志. 2023(05): 540-543 .
    19. 吕晓龙,严旭,章涵. 以强化人文素养为导向的全科医学生叙事医学课程模式构建. 济源职业技术学院学报. 2023(04): 33-37 .
    20. 吕少春,宋汉君,栾海艳,何穆涵. 基于医学模拟教学的医学生临床能力培养研究. 医学教育研究与实践. 2022(03): 294-297 .
    21. 李超. 培养高素质临床医生路径分析. 继续医学教育. 2022(04): 61-64 .
    22. 冯矗,陈飞,张树霞,刘古月,李晓宇. 医学人文关怀教育融入外科实习的实践探索. 中医药管理杂志. 2022(11): 88-90 .
    23. 高铭,韩涛,池靖涵,杜振兰,杨常栓,侯豫,花少栋. 创新互动式医学人文教育在儿科住院医师规范化培训中的作用研究. 中国医学伦理学. 2022(07): 806-810 .
    24. 胡艳超,王洪涛,王怡雯,周戬平. 医学人文教育在心血管内科混合式教学中的应用. 医学教育研究与实践. 2022(05): 648-652 .
    25. 叶榆莹. 英语电影字幕翻译对医学生人文教育的作用探究. 才智. 2022(33): 62-65 .
    26. 陶庆才. 抗疫精神融入医学院校课程思政的研究与实践. 浙江医学教育. 2022(05): 268-270+299 .
    27. 张宏伟,熊梓彤,林芷伊. 英国医学人文关怀及其医学教育启示. 农垦医学. 2022(06): 561-564 .
    28. 祝贺,敖俊红,杨蓉娅,李海涛. 全媒体时代医学摄影的边界教育在皮肤病与性病科临床教学中的意义. 实用皮肤病学杂志. 2022(06): 367-369 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (4281) PDF downloads (525) Cited by(34)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close