SHEN Tian, WU Xiaochuan. Systemic Lupus Erythematosus: from Pathogenesis to New Targeted Therapies[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 234-240. DOI: 10.12290/xhyxzz.2022-0694
Citation: SHEN Tian, WU Xiaochuan. Systemic Lupus Erythematosus: from Pathogenesis to New Targeted Therapies[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 234-240. DOI: 10.12290/xhyxzz.2022-0694

Systemic Lupus Erythematosus: from Pathogenesis to New Targeted Therapies

Funds: 

National Key Research and Development Program of China 2021YFC2702004

National Natural Science Foundation of China Youth Project 82101905

More Information
  • Corresponding author:

    WU Xiaochuan, E-mail: xiaochuanwu@csu.edu.cn

  • Received Date: December 04, 2022
  • Accepted Date: March 01, 2023
  • Available Online: March 11, 2023
  • Issue Publish Date: March 29, 2023
  • Systemic lupus erythematosus (SLE) is an autoimmune disease that affects multiple organs or systems. The etiology of SLE is complex, involving molecular genetics, epigenetics, innate immunity, acquired immunity, race, hormone and environmental factors. Recent progress in fine immunophenotyping, GWAS, single cell sequencing and multiomics analysis has enabled a deeper understanding of the pathogenesis of SLE. Various monoclonal antibodies or small molecule drugs targeting immune cells, costimulatory molecules, cytokines or signal transduction pathways, and CART cell immunotherapy have been developed or even applied in clinical treatment. The approval of belizumab, telitacicept, anifrolumab and voclosporin for SLE has given clinicians, researchers and patients greater confidence and more treatment options for patients with moderate to severe SLE, especially those with refractory SLE.
  • [1]
    Unlu B, Tursen U, Jabalameli N, et al. Immunogenetics of Lupus Erythematosus[J]. Adv Exp Med Biol, 2022, 1367: 213-257.
    [2]
    Wang YF, Zhang Y, Lin Z, et al. Identification of 38 novel loci for systemic lupus erythematosus and genetic heterogeneity between ancestral groups[J]. Nat Commun, 2021, 12: 772. DOI: 10.1038/s41467-021-21049-y
    [3]
    Wang M, Peng Y, Li H, et al. From monogenic lupus to TLR7/MyD88-targeted therapy[J]. Innovation (Camb), 2022, 3: 100299.
    [4]
    Shi F, Xue R, Zhou X, et al. Telitacicept as a BLyS/APRIL dual inhibitor for autoimmune disease[J]. Immunopharmacol Immunotoxicol, 2021, 43: 666-673. DOI: 10.1080/08923973.2021.1973493
    [5]
    Parra Sanchez AR, Voskuyl AE, van Vollenhoven RF. Treat-to-target in systemic lupus erythematosus: advancing towards its implementation[J]. Nat Rev Rheumatol, 2022, 18: 146-157. DOI: 10.1038/s41584-021-00739-3
    [6]
    Ameer MA, Chaudhry H, Mushtaq J, et al. An Overview of Systemic Lupus Erythematosus (SLE) Pathogenesis, Classification, and Management[J]. Cureus, 2022, 14: e30330.
    [7]
    Gordon RE, Nemeth JF, Singh S, et al. Harnessing SLE Autoantibodies for Intracellular Delivery of Biologic Therapeutics[J]. Trends Biotechnol, 2021, 39: 298-310. DOI: 10.1016/j.tibtech.2020.07.003
    [8]
    Stohl W, Schwarting A, Okada M, et al. Efficacy and Safety of Subcutaneous Belimumab in Systemic Lupus Erythematosus: A Fifty-Two-Week Randomized, Double-Blind, Placebo-Controlled Study[J]. Arthritis Rheumatol, 2017, 69: 1016-1027. DOI: 10.1002/art.40049
    [9]
    Steri M, Orru V, Idda ML, et al. Overexpression of the Cytokine BAFF and Autoimmunity Risk[J]. N Engl J Med, 2017, 376: 1615-1626. DOI: 10.1056/NEJMoa1610528
    [10]
    Raupov RK, Suspitsin EN, Imelbaev AI, et al. Simul-taneous Onset of Pediatric Systemic Lupus Erythematosus in Twin Brothers: Case Report[J]. Front Pediatr, 2022, 10: 929358. DOI: 10.3389/fped.2022.929358
    [11]
    Marion MC, Ramos PS, Bachali P, et al. Nucleic Acid-Sensing and Interferon-Inducible Pathways Show Differential Methylation in MZ Twins Discordant for Lupus and Overexpression in Independent Lupus Samples: Implications for Pathogenic Mechanism and Drug Targeting[J]. Genes (Basel), 2021, 12: 1898. DOI: 10.3390/genes12121898
    [12]
    Breitbach ME, Ramaker RC, Roberts K, et al. Population-Specific Patterns of Epigenetic Defects in the B Cell Lineage in Patients With Systemic Lupus Erythematosus[J]. Arthritis Rheumatol, 2020, 72: 282-291. DOI: 10.1002/art.41083
    [13]
    Hu N, Qiu X, Luo Y, et al. Abnormal histone modification patterns in lupus CD4+ T cells[J]. J Rheumatol, 2008, 35: 804-810.
    [14]
    Gautam P, Sharma A, Bhatnagar A. Global histone modification analysis reveals hypoacetylated H3 and H4 histones in B Cells from systemic lupus erythematosus patients[J]. Immunol Lett, 2021, 240: 41-45. DOI: 10.1016/j.imlet.2021.09.007
    [15]
    Wardowska A, Komorniczak M, Bullo-Piontecka B, et al. Transcriptomic and Epigenetic Alterations in Dendritic Cells Correspond With Chronic Kidney Disease in Lupus Nephritis[J]. Front Immunol, 2019, 10: 2026. DOI: 10.3389/fimmu.2019.02026
    [16]
    Pyfrom S, Paneru B, Knox JJ, et al. The dynamic epigenetic regulation of the inactive X chromosome in healthy human B cells is dysregulated in lupus patients[J]. Proc Natl Acad Sci U S A, 2021, 118: e2024624118. DOI: 10.1073/pnas.2024624118
    [17]
    Zhang Q, Liang Y, Yuan H, et al. Integrated analysis of lncRNA, miRNA and mRNA expression profiling in patients with systemic lupus erythematosus[J]. Arch Med Sci, 2019, 15: 872-879. DOI: 10.5114/aoms.2018.79145
    [18]
    Alsheikh AJ, Wollenhaupt S, King EA, et al. The landscape of GWAS validation; systematic review identifying 309 validated non-coding variants across 130 human diseases[J]. BMC Med Genomics, 2022, 15: 74. DOI: 10.1186/s12920-022-01216-w
    [19]
    Hiramatsu-Asano S, Wada J. Therapeutic Approaches Targeting miRNA in Systemic Lupus Erythematosus[J]. Acta Med Okayama, 2022, 76: 359-371.
    [20]
    Psarras A, Wittmann M, Vital EM. Emerging concepts of type I interferons in SLE pathogenesis and therapy[J]. Nat Rev Rheumatol, 2022, 18: 575-590.
    [21]
    Farkas L, Beiske K, Lund-Johansen F, et al. Plasmacytoid dendritic cells (natural interferon-alpha/beta-producing cells) accumulate in cutaneous lupus erythematosus lesions[J]. Am J Pathol, 2001, 159: 237-243. DOI: 10.1016/S0002-9440(10)61689-6
    [22]
    Rowland SL, Riggs JM, Gilfillan S, et al. Early, transient depletion of plasmacytoid dendritic cells ameliorates autoimmunity in a lupus model[J]. J Exp Med, 2014, 211: 1977-1991. DOI: 10.1084/jem.20132620
    [23]
    Klopp-Schulze L, Shaw JV, Dong JQ, et al. Applying Modeling and Simulations for Rational Dose Selection of Novel Toll-Like Receptor 7/8 Inhibitor Enpatoran for Indications of High Medical Need[J]. Clin Pharmacol Ther, 2022, 112: 297-306. DOI: 10.1002/cpt.2606
    [24]
    Alunno A, Padjen I, Fanouriakis A, et al. Pathogenic and Therapeutic Relevance of JAK/STAT Signaling in Systemic Lupus Erythematosus: Integration of Distinct Inflammatory Pathways and the Prospect of Their Inhibition with an Oral Agent[J]. Cells, 2019, 8: 898. DOI: 10.3390/cells8080898
    [25]
    Furie RA, van Vollenhoven RF, Kalunian K, et al. Trial of Anti-BDCA2 Antibody Litifilimab for Systemic Lupus Erythematosus[J]. N Engl J Med, 2022, 387: 894-904. DOI: 10.1056/NEJMoa2118025
    [26]
    Kishimoto D, Kirino Y, Tamura M, et al. Dysregulated heme oxygenase-1(low) M2-like macrophages augment lupus nephritis via Bach1 induced by type I interferons[J]. Arthritis Res Ther, 2018, 20: 64. DOI: 10.1186/s13075-018-1568-1
    [27]
    Willemsen L, de Winther MP. Macrophage subsets in atherosclerosis as defined by single-cell technologies[J]. J Pathol, 2020, 250: 705-714. DOI: 10.1002/path.5392
    [28]
    Ahamada MM, Jia Y, Wu X. Macrophage Polarization and Plasticity in Systemic Lupus Erythematosus[J]. Front Immunol, 2021, 12: 734008. DOI: 10.3389/fimmu.2021.734008
    [29]
    Kucuksezer UC, Aktas Cetin E, Esen F, et al. The Role of Natural Killer Cells in Autoimmune Diseases[J]. Front Immunol, 2021, 12: 622306. DOI: 10.3389/fimmu.2021.622306
    [30]
    Carmona-Rivera C, Kaplan MJ. Low-density granulocytes in systemic autoimmunity and autoinflammation[J]. Immunol Rev, 2022. doi: 10.1111/imr.13161.
    [31]
    Bolouri N, Akhtari M, Farhadi E, et al. Role of the innate and adaptive immune responses in the pathogenesis of systemic lupus erythematosus[J]. Inflamm Res, 2022, 71: 537-554. DOI: 10.1007/s00011-022-01554-6
    [32]
    Chen PM, Tsokos GC. T Cell Abnormalities in the Pathogenesis of Systemic Lupus Erythematosus: an Update[J]. Curr Rheumatol Rep, 2021, 23: 12. DOI: 10.1007/s11926-020-00978-5
    [33]
    Furie RA, Bruce IN, Dorner T, et al. Phase 2, rando-mized, placebo-controlled trial of dapirolizumab pegol in patients with moderate-to-severe active systemic lupus erythematosus[J]. Rheumatology (Oxford), 2021, 60: 5397-5407. DOI: 10.1093/rheumatology/keab381
    [34]
    Shan J, Jin H, Xu Y. T Cell Metabolism: A New Perspective on Th17/Treg Cell Imbalance in Systemic Lupus Erythematosus[J]. Front Immunol, 2020, 11: 1027. DOI: 10.3389/fimmu.2020.01027
    [35]
    He J, Zhang R, Shao M, et al. Efficacy and safety of low-dose IL-2 in the treatment of systemic lupus erythematosus: a randomised, double-blind, placebo-controlled trial[J]. Ann Rheum Dis, 2020, 79: 141-149.
    [36]
    Lai ZW, Kelly R, Winans T, et al. Sirolimus in patients with clinically active systemic lupus erythematosus resistant to, or intolerant of, conventional medications: a single-arm, open-label, phase 1/2 trial[J]. Lancet, 2018, 391: 1186-1196. DOI: 10.1016/S0140-6736(18)30485-9
    [37]
    Guillonneau C, Aubry V, Renaudin K, et al. Inhibition of chronic rejection and development of tolerogenic T cells after ICOS-ICOSL and CD40-CD40L co-stimulation blockade[J]. Transplantation, 2005, 80: 546-554.
    [38]
    Zhang J, Guo Q, Dai D, et al. Rapamycin-encapsulated costimulatory ICOS/CD40L-bispecific nanoparticles restrict pathogenic helper T-B-cell interactions while in situ suppressing mTOR for lupus treatment[J]. Biomaterials, 2022, 289: 121766. DOI: 10.1016/j.biomaterials.2022.121766
    [39]
    Radziszewska A, Moulder Z, Jury EC, et al. CD8(+) T Cell Phenotype and Function in Childhood and Adult-Onset Connective Tissue Disease[J]. Int J Mol Sci, 2022, 23: 11431. DOI: 10.3390/ijms231911431
    [40]
    Perez RK, Gordon MG, Subramaniam M, et al. Single-cell RNA-seq reveals cell type-specific molecular and genetic associations to lupus[J]. Science, 2022, 376: eabf1970. DOI: 10.1126/science.abf1970
    [41]
    Lou H, Ling GS, Cao X. Autoantibodies in systemic lupus erythematosus: From immunopathology to therapeutic target[J]. J Autoimmun, 2022, 132: 102861. DOI: 10.1016/j.jaut.2022.102861
    [42]
    Jenks SA, Cashman KS, Zumaquero E, et al. Distinct Effector B Cells Induced by Unregulated Toll-like Receptor 7 Contribute to Pathogenic Responses in Systemic Lupus Erythematosus[J]. Immunity, 2018, 49: 725-739. e6. DOI: 10.1016/j.immuni.2018.08.015
    [43]
    Phalke S, Rivera-Correa J, Jenkins D, et al. Molecular mechanisms controlling age-associated B cells in autoim-munity[J]. Immunol Rev, 2022, 307: 79-100. DOI: 10.1111/imr.13068
    [44]
    Matsushita T. Regulatory and effector B cells: Friends or foes?[J]. J Dermatol Sci, 2019, 93: 2-7. DOI: 10.1016/j.jdermsci.2018.11.008
    [45]
    Mougiakakos D, Kronke G, Volkl S, et al. CD19-Targeted CAR T Cells in Refractory Systemic Lupus Erythematosus[J]. N Engl J Med, 2021, 385: 567-569. DOI: 10.1056/NEJMc2107725
    [46]
    Mackensen A, Muller F, Mougiakakos D, et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus[J]. Nat Med, 2022, 28: 2124-2132. DOI: 10.1038/s41591-022-02017-5
    [47]
    Zhang W, Feng J, Cinquina A, et al. Treatment of Systemic Lupus Erythematosus using BCMA-CD19 Compound CAR[J]. Stem Cell Rev Rep, 2021, 17: 2120-2123. DOI: 10.1007/s12015-021-10251-6
    [48]
    Oh S, Mao X, Manfredo-Vieira S, et al. Precision targeting of autoantigen-specific B cells in muscle-specific tyrosine kinase myasthenia gravis with chimeric autoantibody receptor T cells[J]. Nat Biotechnol, 2023. doi: 10.1038/s41587-022-01637-z.
  • Related Articles

    [1]GU Xiaoyang. Introduction and Production Plan of Insulin by Internal Medicine Department of Peking Union Medical College Hospital[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 229-232. DOI: 10.12290/xhyxzz.2023-0183
    [2]WU Miao. Combining Education, Clinical Practice and Scientific Research: the Early Development of the Obstetrics and Gynecology of Peking Union Medical College(1919—1942)[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 442-448. DOI: 10.12290/xhyxzz.2022-0364
    [3]WEI Yuhang, LI Zeya, YANG Shuyue, ZHANG Weihua. The Parasitologists and Medical Educators of Peking Union Medical College Shown on the Old Postcards[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(1): 225-228. DOI: 10.12290/xhyxzz.2021-0759
    [4]GU Xiaoyang, MA Mingsheng, SONG Hongmei. Locating Biomedicine in China: the Development of the Division of Pediatrics in Peking Union Medical College Hospital(1922—1942)[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(3): 517-524. DOI: 10.12290/xhyxzz.2021-0664
    [5]CHEN Di, YU Weihong, ZHANG Xiao, ZHANG Yang, ZHANG Meifen. Application of Differentiated Training Program for Ophthalmic Postdoctoral Trainees in Peking Union Medical College Hospital[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(1): 61-65. DOI: 10.12290/xhyxzz.2021-0537
    [6]LI Jing, LI Hang, YANG Yingyun, XIA Peng, LI Xiaoqing, LI Yue, YAN Xiaowei, ZHU Huijuan, PAN Hui, ZHANG Fengchun, ZHANG Shuyang. Exploration of Education for Complex Elite Medical Talents in the Department of Internal Medicine at Peking Union Medical College Hospital: A Summary of Clinical Medical Postdoctoral Project Since 2016[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(1): 46-50. DOI: 10.12290/xhyxzz.2021-0463
    [7]ZHANG Shuyang. Exploration and Practice of the Training System of Comprehensive Medical Talents at Peking Union Medical College Hospital[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(1): 5-8. DOI: 10.12290/xhyxzz.2021-0535
    [8]Xi-ya WANG, Cheng ZHEN. Development of Neurology and Psychiatry in Peking Union Medical College Hospital and Contributions of the Foreign Heads of the Division(1921—1941)[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(4): 492-499. DOI: 10.3969/j.issn.1674-9081.2020.04.023
    [9]Xiao-yang GU. A Sketch of Medicine and Society in the Era of Republican China: Social Service Department of Peking Union Medical College Hospital[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(3): 304-309. DOI: 10.3969/j.issn.1674-9081.2019.03.021
  • Cited by

    Periodical cited type(13)

    1. 吴觉伦,申乐. 术后早期经口饮食在普通外科患者中的临床应用. 中华普通外科杂志. 2025(01): 70-74 .
    2. 胡春华,赵晓艳,吴黎黎,陈红芽,许鑫,王古岩. 术中多模式镇痛对终末期头颈部癌症患者开腹胃造瘘术后早期恢复质量的影响:前瞻性随机对照研究. 协和医学杂志. 2024(02): 359-365 . 本站查看
    3. 肖诗玉,李稀,王淼,官春燕. 1例老年高血压合并糖尿病患者并发食道异物迁移致咽后脓肿的个案护理. 医药前沿. 2024(02): 102-105 .
    4. 罗晨,黄楚贤,赵冬琴,张昊,沈雨晴,沈玲. 腹腔镜结直肠癌根治术后患者早期下床活动方案的构建. 中华现代护理杂志. 2023(25): 3435-3440 .
    5. 罗晨,沈玲,王传伟,顾佳妮,王瑾,赵黎,黄帅. 腹腔镜结直肠癌根治术后患者早期下床活动现状及影响因素. 上海交通大学学报(医学版). 2023(09): 1201-1210 .
    6. 周太成 ,黄恩民. 切口疝腹腔镜IPOM修补七步法操作指南(2022版). 中国普通外科杂志. 2022(04): 421-432 .
    7. 李佳新,丁林,董彦杰,李茜. 深度肌松的临床研究应用进展. 西部医学. 2022(05): 770-774 .
    8. 匡风霞,赵晓虹,韩宝佳,高成杰. 对控制机器人甲状腺癌根治术患者手术应激反应麻醉深度的探讨. 山东大学学报(医学版). 2022(05): 81-86 .
    9. 胡帅,付佳,叶雨阳,金延武,赵鑫. 超声引导下腰方肌阻滞在腹腔镜疝修补术后加速康复中的应用. 山东医药. 2022(22): 65-68 .
    10. 汪夏云,顾一帆,陈红,张琳,戴秀娟,汤爱洁,胡鑫淼,吴茜. 术前三联预康复对老年结直肠肿瘤病人康复的影响. 护理研究. 2022(18): 3233-3238 .
    11. 卫佼佼,申乐. 术中静脉输注利多卡因在加速康复外科中的研究进展. 临床麻醉学杂志. 2022(10): 1097-1100 .
    12. 袁秀婷,孙雪琴,詹晓青. 胃癌根治术后肺部感染列线图预测模型的建立. 循证护理. 2022(22): 3093-3098 .
    13. 苏泽,赵国良,张智,侯晴晴,肖亿,覃鑫,孙兴. 加速康复外科理念在ERCP胰管支架置入术治疗胰腺假性囊肿中的应用. 河南医学高等专科学校学报. 2022(05): 533-536 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (4300) PDF downloads (525) Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close