SHEN Jing, CHEN Wanqi, HOU Xiaorong, QIU Jie. Current Status and Prospects of Radiation Therapy Guided by Optical Surface Monitoring Technology[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 135-140. DOI: 10.12290/xhyxzz.2023-0287
Citation: SHEN Jing, CHEN Wanqi, HOU Xiaorong, QIU Jie. Current Status and Prospects of Radiation Therapy Guided by Optical Surface Monitoring Technology[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 135-140. DOI: 10.12290/xhyxzz.2023-0287

Current Status and Prospects of Radiation Therapy Guided by Optical Surface Monitoring Technology

Funds: 

National High Level Hospital Clinical Research Funding 2022-PUMCH-A-99

National High Level Hospital Clinical Research Funding 2022-PUMCH-B-116

More Information
  • Corresponding author:

    HOU Xiaorong, E-mail: hxr_pumch@163.com

  • Received Date: June 11, 2023
  • Accepted Date: September 04, 2023
  • Issue Publish Date: January 29, 2024
  • Surface guided radiation therapy (SGRT) is a non-radiation, non-invasive technology that provides continuous postural monitoring of patients during radiotherapy. Using advanced 3D optical surface localization and tracking technology, SGRT quickly captures the surface contour information of patients through optical means to generate high-precision 3D surface contours, enabling real-time monitoring of patients during radiotherapy to ensure its accuracy. This image-guided technology has been widely applied in radiotherapy for tumors in different parts of the body, such as breast, intracranial, head and neck, and limbs. SGRT can reduce initial setup errors and provide real-time monitoring during treatment, or be combined with respiratory gating and deep inspiration breath-hold techniques. SGRT can also reduce radiation dose by reducing the use of CBCT, improve patient comfort with the use of immobilization devices, and enhance clinical speed, efficiency, and safety. This review aims to provide an overview of the commonly used technology and clinical applications of SGRT, and discuss its current limitations and future prospects.
  • [1]
    D'Ambrosio D J, Bayouth J, Chetty I J, et al. Continuous localization technologies for radiotherapy delivery: report of the American Society for Radiation Oncology Emerging Technology Committee[J]. Pract Radiat Oncol, 2012, 2(2): 145-150. DOI: 10.1016/j.prro.2011.10.005
    [2]
    Fallatah A, Bolic M, MacPherson M, et al. Monitoring respiratory motion during VMAT treatment delivery using ultra-wideband radar[J]. Sensors (Basel), 2022, 22(6): 2287. DOI: 10.3390/s22062287
    [3]
    Dong P, Lee P, Ruan D, et al. 4π noncoplanar liver SBRT: a novel delivery technique[J]. Int J Radiat Oncol Biol Phys, 2013, 85(5): 1360-1366. DOI: 10.1016/j.ijrobp.2012.09.028
    [4]
    王宇, 唐斌, 王相飞, 等. 光学体表引导技术在放射治疗中的应用进展[J]. 肿瘤预防与治疗, 2023, 36(1): 75-81.

    Wang Y, Tang B, Wang X F, et al. Advances in application of optical surface guidance in radiotherapy[J]. J Cancer Control Treat, 2023, 36(1): 75-81.
    [5]
    Rwigema J C M, Lamiman K, Reznik R S, et al. Palliative radiation therapy for superior vena cava syndrome in metastatic Wilms tumor using 10XFFF and 3D surface imaging to avoid anesthesia in a pediatric patient-a teaching case[J]. Adv Radiat Oncol, 2017, 2(1): 101-104. DOI: 10.1016/j.adro.2016.12.007
    [6]
    Gilles M, Fayad H, Miglierini P, et al. Patient positioning in radiotherapy based on surface imaging using time of flight cameras[J]. Med Phys, 2016, 43(8 Part 1): 4833-4841.
    [7]
    Via R, Fassi A, Fattori G, et al. Optical eye tracking system for real-time noninvasive tumor localization in external beam radiotherapy[J]. Med Phys, 2015, 42(5): 2194-2202. DOI: 10.1118/1.4915921
    [8]
    Wiant D B, Wentworth S, Maurer J M, et al. Surface imaging-based analysis of intrafraction motion for breast radiotherapy patients[J]. J Appl Clin Med Phys, 2014, 15(6): 147-159. DOI: 10.1120/jacmp.v15i6.4957
    [9]
    Gopan O, Wu Q W. Evaluation of the accuracy of a 3D surface imaging system for patient setup in head and neck cancer radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2012, 84(2): 547-552. DOI: 10.1016/j.ijrobp.2011.12.004
    [10]
    Schönecker S, Walter F, Freislederer P, et al. Treatment planning and evaluation of gated radiotherapy in left-sided breast cancer patients using the CatalystTM/SentinelTM system for deep inspiration breath-hold (DIBH)[J]. Radiat Oncol, 2016, 11(1): 143. DOI: 10.1186/s13014-016-0716-5
    [11]
    Lehmann J, Standen T S, Kaur G, et al. Methodology of thermal drift measurements for surface guided radiation therapy systems and clinical impact assessment illustrated on the C-rad Catalyst+ HD system[J]. Tech Innov Patient Support Radiat Oncol, 2022, 21: 58-63. DOI: 10.1016/j.tipsro.2022.02.005
    [12]
    Al-Hallaq H A, Cerviño L, Gutierrez A N, et al. AAPM task group report 302: surface-guided radiotherapy[J]. Med Phys, 2022, 49(4): e82-e112.
    [13]
    Kügele M, Mannerberg A, Nørring Bekke S, et al. Surface guided radiotherapy (SGRT) improves breast cancer patient setup accuracy[J]. J Appl Clin Med Phys, 2019, 20(9): 61-68. DOI: 10.1002/acm2.12700
    [14]
    Crop F, Pasquier D, Baczkiewic A, et al. Surface imaging, laser positioning or volumetric imaging for breast cancer with nodal involvement treated by helical TomoTherapy[J]. J Appl Clin Med Phys, 2016, 17(5): 200-211. DOI: 10.1120/jacmp.v17i5.6041
    [15]
    Swinnen A C C, Öllers M C, Loon Ong C, et al. The potential of an optical surface tracking system in non-coplanar single isocenter treatments of multiple brain metastases[J]. J Appl Clin Med Phys, 2020, 21(6): 63-72. DOI: 10.1002/acm2.12866
    [16]
    Wiersma R D, Tomarken S L, Grelewicz Z, et al. Spatial and temporal performance of 3D optical surface imaging for real-time head position tracking[J]. Med Phys, 2013, 40(11): 111712. DOI: 10.1118/1.4823757
    [17]
    Cerviño L I, Detorie N, Taylor M, et al. Initial clinical experience with a frameless and maskless stereotactic radiosurgery treatment[J]. Pract Radiat Oncol, 2012, 2(1): 54-62. DOI: 10.1016/j.prro.2011.04.005
    [18]
    Pan H, Cerviño L I, Pawlicki T, et al. Frameless, real-time, surface imaging-guided radiosurgery: clinical outcomes for brain metastases[J]. Neurosurgery, 2012, 71(4): 844-851. DOI: 10.1227/NEU.0b013e3182647ad5
    [19]
    Leong B, Padilla L. Impact of use of optical surface imaging on initial patient setup for stereotactic body radiotherapy treatments[J]. J Appl Clin Med Phys, 2019, 20(12): 149-158. DOI: 10.1002/acm2.12779
    [20]
    Lau S K M, Patel K, Kim T, et al. Clinical efficacy and safety of surface imaging guided radiosurgery (SIG-RS) in the treatment of benign skull base tumors[J]. J Neurooncol, 2017, 132(2): 307-312. DOI: 10.1007/s11060-017-2370-7
    [21]
    Li G, Lovelock D M, Mechalakos J, et al. Migration from full-head mask to "open-face" mask for immobilization of patients with head and neck cancer[J]. J Appl Clin Med Phys, 2013, 14(5): 243-254. DOI: 10.1120/jacmp.v14i5.4400
    [22]
    Lee S K, Huang S, Zhang L, et al. Accuracy of surface-guided patient setup for conventional radiotherapy of brain and nasopharynx cancer[J]. J Appl Clin Med Phys, 2021, 22(5): 48-57. DOI: 10.1002/acm2.13241
    [23]
    Darby S C, Ewertz M, McGale P, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer[J]. N Engl J Med, 2013, 368(11): 987-998. DOI: 10.1056/NEJMoa1209825
    [24]
    Yamauchi R, Mizuno N, Itazawa T, et al. Dosimetric evaluation of deep inspiration breath hold for left-sided breast cancer: analysis of patient-specific parameters related to heart dose reduction[J]. J Radiat Res, 2020, 61(3): 447-456. DOI: 10.1093/jrr/rraa006
    [25]
    Schöffel P J, Harms W, Sroka-Perez G, et al. Accuracy of a commercial optical 3D surface imaging system for realignment of patients for radiotherapy of the thorax[J]. Phys Med Biol, 2007, 52(13): 3949-3963. DOI: 10.1088/0031-9155/52/13/019
    [26]
    Boda-Heggemann J, Knopf AC, Simeonova-Chergou A, et al. Deep Inspiration Breath Hold-Based Radiation Therapy: A Clinical Review[J]. Int J Radiat Oncol Biol Phys, 2016, 94(3): 478-492. DOI: 10.1016/j.ijrobp.2015.11.049
    [27]
    Zhao H, Williams N, Poppe M, et al. Comparison of surface guidance and target matching for image-guided accelerated partial breast irradiation (APBI)[J]. Med Phys, 2019, 46(11): 4717-4724. DOI: 10.1002/mp.13816
    [28]
    Rossi M, Laaksomaa M, Aula A. Patient setup accuracy in DIBH radiotherapy of breast cancer with lymph node inclusion using surface tracking and image guidance[J]. Med Dosim, 2022, 47(2): 146-150. DOI: 10.1016/j.meddos.2021.12.003
    [29]
    Keall P J, Mageras G S, Balter J M, et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76[J]. Med Phys, 2006, 33(10): 3874-3900. DOI: 10.1118/1.2349696
    [30]
    Schaerer J, Fassi A, Riboldi M, et al. Multi-dimensional respiratory motion tracking from markerless optical surface imaging based on deformable mesh registration[J]. Phys Med Biol, 2012, 57(2): 357-373. DOI: 10.1088/0031-9155/57/2/357
    [31]
    Krengli M, Gaiano S, Mones E, et al. Reproducibility of patient setup by surface image registration system in conformal radiotherapy of prostate cancer[J]. Radiat Oncol, 2009, 4: 9. DOI: 10.1186/1748-717X-4-9
    [32]
    Aznar M C, Maraldo M V, Schut D A, et al. Minimizing late effects for patients with mediastinal Hodgkin lymphoma: deep inspiration breath-hold, IMRT, or both?[J]. Int J Radiat Oncol Biol Phys, 2015, 92(1): 169-174. DOI: 10.1016/j.ijrobp.2015.01.013
    [33]
    Josipovic M, Aznar M C, Thomsen J B, et al. Deep inspiration breath hold in locally advanced lung cancer radiotherapy: validation of intrafractional geometric uncertainties in the INHALE trial[J]. Br J Radiol, 2019, 92(1104): 20190569. DOI: 10.1259/bjr.20190569
    [34]
    Stick L B, Vogelius I R, Risum S, et al. Intrafractional fiducial marker position variations in stereotactic liver radiotherapy during voluntary deep inspiration breath-hold[J]. Br J Radiol, 2020, 93(1116): 20200859. DOI: 10.1259/bjr.20200859
    [35]
    Gierga D P, Turcotte J C, Tong L W, et al. Analysis of setup uncertainties for extremity sarcoma patients using surface imaging[J]. Pract Radiat Oncol, 2014, 4(4): 261-266.
  • Related Articles

    [1]LIAN Xin, SHEN Jing, SUN Xiansong, YANG Bo, SUN Yuliang, SHEN Jie, ZHANG Fuquan. Treatment Outcome of Intensity-modulated Radiotherapy for 15 Patients with Giant Pituitary Adenoma[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(1): 117-123. DOI: 10.12290/xhyxzz.2021-0413
    [2]SUN Xian-song, HOU Xiao-rong, LIU Xiao-ming, ZHOU Bing, CHAI Shuang, HU Ke, QIU Jie, ZHANG Fu-quan. The Experience and Inspiration on the Prevention and Control of Coronavirus Disease 2019 in the Department of Radiotherapy[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(1): 9-12. DOI: 10.12290/xhyxzz.20200242
    [3]Lang YU, Bo YANG, Yu-liang SUN, Xian-song SUN, Xin-hai WANG, Wen-bo LI, Fei JIANG, Nan LI, Jie QIU, Fu-quan ZHANG. Feasibility of Checkmate 2 in Radiotherapy Accelerator Output Check[J]. Medical Journal of Peking Union Medical College Hospital, 2016, 7(1): 33-36. DOI: 10.3969/j.issn.1674-9081.2016.01.007
    [4]Wei-ping WANG, Bo YANG, Ting-tian PANG, Nan LIU, Ke HU, Jie QIU, Fu-quan ZHANG. Dosimetric Comparison of Different Pattern of Intensity-modulated Radiotherapy for Pancreatic Carcinoma[J]. Medical Journal of Peking Union Medical College Hospital, 2014, 5(4): 417-421. DOI: 10.3969/j.issn.1674-9081.2014.04.013
    [5]Bo YANG, Ting-tian PANG, Xian-song SUN, Ke HU, Jie QIU, Fu-quan ZHANG. Dosimetric Comparison between Preoperative Volumetric Modulated Arc Therapy and Fixed-field Intensity-modulated Radiotherapy for Rectal Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2014, 5(2): 179-183. DOI: 10.3969/j.issn.1674-9081.2014.02.011
    [8]Bo YANG, Ting-tian PANG, Xia LIU, Xian-song SUN, Wen-bo LI, Ke HU, Jie QIU, Fu-quan ZHANG. Comparison of the Radiation Doses Used in Helical Tomotherapy and Fixed-field Intensity-modulated Radiotherapy for Cervical Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2013, 4(4): 392-396. DOI: 10.3969/j.issn.1674-9081.2013.04.010
    [9]Jie SHEN, Yue MING, Xian-chao TANG, Ke HU, Zhi-kai LIU, Xian-song SUN, Wen-bo LI, Zhi-wei YANG, Fei JIANG, Nan LI, Li-min LI, Fu-quan ZHANG. Radiosensitivity of Cervical Cancer Cells to Different Radiation Doses and Dose Rates[J]. Medical Journal of Peking Union Medical College Hospital, 2013, 4(4): 383-386. DOI: 10.3969/j.issn.1674-9081.2013.04.008
  • Cited by

    Periodical cited type(12)

    1. 吕婷婷,张慧琳,袁睆,郝迎春,黄玉婷,刘亮,邹颖. 青少年与年轻成人癌症患者预立医疗照护计划干预方案构建. 护理学杂志. 2024(01): 6-11 .
    2. 曾沫,万凌敏,卢德花,江夏颖. 预立安宁整合照护计划对晚期癌症患者生命意义及家属生活质量的影响. 中国当代医药. 2024(02): 170-174 .
    3. 蔡思雨,郭巧红,王瑞欣,周翾. 儿童安宁疗护共同决策的本土化临床实践. 医学与哲学. 2024(12): 34-38 .
    4. 蔡思雨,周翾,成磊,王瑞欣,彭晓霞. 儿科安宁疗护中共同决策的阻碍因素与应对策略的定性研究. 护理学杂志. 2024(20): 35-40 .
    5. 舒晓,杨良琴,杨子敬,周玉兰,张琪,陈茜. 视频决策辅助在预立医疗照护计划中的应用进展. 中华现代护理杂志. 2023(04): 557-560 .
    6. 黄婕,蔡思雨. 儿童安宁疗护营养管理专家建议. 中国小儿血液与肿瘤杂志. 2023(04): 209-216 .
    7. 王丽,周芙玲,邹会静,杨冰香,罗丹,王晓琴,刘茜. 在青少年中实施预立医疗照护计划的研究进展. 中国护理管理. 2023(08): 1272-1276 .
    8. 张璐,黄月霖,伍晓琴,杨婷,陈佳增,傅静. 以家庭为中心的儿科预立医疗照护计划研究进展. 中国护理管理. 2023(08): 1233-1238 .
    9. 李凡,解超英,李程娟,谢建平,廖慧. 艾滋病患者对预立医疗照护计划认知的质性研究. 当代护士(上旬刊). 2023(12): 122-126 .
    10. 成磊,翟晓文,周翾. 儿童舒缓疗护整合模式的介绍及启示. 医学与哲学. 2023(21): 27-29 .
    11. 张婧一,刘梅洁,王雨,王岳. 未成年人安宁疗护程序规范建议. 中国医学伦理学. 2022(10): 1157-1170 .
    12. 王瑞欣,蔡思雨,周翾. 42例生命终末期血液肿瘤患儿在临终关怀治疗中症状分析. 中国小儿血液与肿瘤杂志. 2022(05): 326-330 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (518) PDF downloads (67) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close