Skip to main content
Log in

Solutans (Echinoderms): Evolution Frozen between Torsion and Pentaradiality

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

The variability of the location of the mouth along the theca in different genera of solutans indicates the presence of torsion in their ontogeny and is explained by a paedomorphic delay or overdevelopment of this process. The plane of change in the location of the mouth with the feeding appendage completely covering it corresponds to the larval plane. The flattening of the theca of most solutans is a secondary result of the transition to lying on the substrate. Larvae or young individuals of different taxa lay down on the substrate on their right or left side. This explains the opposite direction to the ground of adult animals of some taxa. Solutans branched off from the main stem of echinoderms before the origin of pentaradial symmetry, but after the appearance of torsion in their ontogeny. In their level of organization, they appear to be neither directly related to hemichordates, nor to be strongly modified Blastozoa. The appearance of the torsion in the ontogeny of echinoderms phylogenetically precedes the emergence of pentamerism but does not necessarily lead to it. The inversion of the anterior Hox-genes is a consequence, but not the cause, of torsion and pentamerism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

REFERENCES

  1. Bassler, R.S. Pelmatozoa Palaeozoica (Generum et Genotyporum Index et Bibliographia), Fossilium Catalogus I Animalia, 1938, vol. 83, pp. 1–194.

    Google Scholar 

  2. Beklemishev, V.N., Osnovy sravnitel’noy anatomii bespozvonochnykh, Izd. 3, pererabotannoye i dopolnennoe (Fundamentals of Comparative Anatomy of Invertebrates, 3rd ed., Revised and Expanded), Moscow: Nauka, 1964, vols. 1–2.

  3. Byrne, M., Martinez, P., and Morris, V., Evolution of a pentameral body plan was not linked to translocation of anterior Hox genes: The echinoderm HOX cluster revisited, Evol. Dev., 2016, pp. 1–7.https://doi.org/10.1111/ede.12172

  4. Budd, G.E., Evolution: Mapping out early echinoderms, Current Biol., 2020, 30, R759–R782.https://doi.org/10.1016/j.cub.2020.05.013

    Article  Google Scholar 

  5. Caster, K.E., Homoiostelea, in Treatise on Invertebrate Paleontology. Part S. Echinodermata, Moore, R.C., Ed., Lawrence, Kansas: Geol. Soc. Am. Univ. of Kansas, 1968, S581–S627.

    Google Scholar 

  6. Daley, P.E.J., The anatomy of the solute Girvanicystis batheri (?Chordata) from the Upper Ordovician of Scotland and a new species of Girvanicystis from the Upper Ordovician of South Wales, Zool. J. Linn. Soc., 1992, vol. 105, pp. 353–375. https://doi.org/10.1111/j.1096-3642.1992.tb01233.x

    Article  Google Scholar 

  7. Daley, P.E.J., Anatomy, locomotion and ontogeny of the solute Castericystis vali from the Middle Cambrian of Utah, Geobios, 1995, vol. 28, no. 5, pp. 585–614. https://doi.org/10.1016/s0016-6995(95)80214-2

    Article  Google Scholar 

  8. Daley, P.E.J., The first solute which is attached as an adult: a Mid-Cambrian fossil from Utah with echinoderm and chordate affinities, Zool. J. Linn. Soc., 1996, vol. 117, no. 4, 405–440. https://doi.org/10.1111/j.1096-3642.1996.tb01659.x

    Article  Google Scholar 

  9. David, B., Lefebvre, B., Mooi, R., et Parsley, R.L., Are homalozoans echinoderms? An answer from the extraxial-axial theory, Paleobiology, 2000, vol. 26, pp. 529–555. https://doi.org/10.1666/0094-8373(2000)0262.0.CO;2

    Article  Google Scholar 

  10. Deline, B., Thompson, J.R., Smith, N.S., et al., Evolution and development at the origin of a phylum, Curr. Biol., 2020, 30, no. 9, pp. 1672–1679.

    Article  Google Scholar 

  11. Dzik, J., Evolutionary origin of asymmetry in early metazoan animals, in Advances in Biochirality, Palyi, G., Zucchi, C., and Caglioti, L., Eds., Amsterdam: Elsevier, 1999, pp. 153–190.

  12. Friedrich, W.P., Systematik und Funktionsmorphologie mittelkam− brischer Cincta (Carpoidea, Echinodermata), Beringeria, 1993, vol. 7, pp. 3–190.

    Google Scholar 

  13. Haeckel, E., Generelle Morphologie der Organismen. Allgemeine Grundzuge der Organischen Formen-Wissenschaft, Mechanisch Begrundet Durch die von Charles Darwin Reformirte Descendenztheorie, Vol. 1: I–XXXII, 1–574, pls. I–II; Vol. 2: I–CLX, 1–462, pls. I–VIII, Berlin, Verlag von Georg Reimer, 1866.

  14. Isaeva, V.V. and Rozhnov, S.V., Transformation of the ancestral body plan and axial growth in echinoderms: Ontogenetic and paleontological data, Paleontol. J., 2022, vol. 56, no. 8, pp. 1–24.

    Article  Google Scholar 

  15. Ivanova-Kazas, O.M., Sravnitel’naya embriologiya bespozvonochnykh zhivotnykh. V 6-ti chastyakh. Chast’ 3. Iglokozhiye i polukhordovye (Comparative Embryology of Invertebrate Animals, in 6 vols. Vol. 3: Echinoderms and Hemichordates), Moscow: Nauka, 1978.

  16. Jaekel, O., Ueber Carpoideen, eine neue Klasse von Pelmatozoen, Zeitschr. Deutsch. Geol. Gesellsch., 1901, 52, pp. 661–677.

    Google Scholar 

  17. Jaekel, O., Phylogenie und system der pelmatozoen, Paläontol. Zeitschr., 1918, vol. 3, no. 1, pp. 1, pp. 1–128.

  18. Jefferies, R.P.S., The Ancestry of the Vertebrates, London: British Museum (Nat. Hist.), 1986.

  19. Jefferies, R.P.S., The solute Dendrocystoides scoticus from the Upper Ordovician of Scotland and the ancestry of chordates and echinoderms, Palaeontology, 1990, vol. 33, pp. 631–679.

    Google Scholar 

  20. Lefebvre, B., Derstler, K., and Sumrall, C.D., A reinterpretation of the solutan Plasiacystis mobilis (Echinodermata) from the Middle Ordovician of Bohemia, in Echinoderm Research 2010: Proc. Seventh European Conf. on Echinoderms, Göttingen, Germany, October 2–9, 2010, Kroh, A. and Reich, M., Eds., Zoosymposia, 2012, no. 7, pp. 287–306.

  21. Lefebvre, B. and Lerosey-Aubril, R., Laurentian origin of solutan echinoderms: new evidence from the Guzhangian (Cambrian Series 3) Weeks Formation of Utah, USA, Geol. Mag., 2018, vol. 155, no. 5, pp. 1190–1204. https://doi.org/10.1017/S0016756817000152

    Article  Google Scholar 

  22. Li, Y., Omori, A., Flores, R.L., et al., Genomic insights of body plan transitions from bilateral to pentameral symmetry in Echinoderms, Comm. Biol., 2020, vol. 3. https://doi.org/10.1038/s42003-020-1091-1

  23. Mooi, R. and David, B., Radial symmetry, the anterior/posterior axis, and echinoderm Hox genes. Ann. Rev. Ecol. Syst., 2008, vol. 39, pp. 43–62.

    Article  Google Scholar 

  24. Nardin, E., Lefebvre, B., David, B., and Mooi, R., La radiation des échinodermes au Paléozoïque inférieur, l’exemple des blastozoaires, C. R. Palevol, 2009, vol. 8, nos. 2–3, pp. 179–188.https://doi.org/10.1016/j.crpv.2008.09.004

    Article  Google Scholar 

  25. Noailles, F., Lefebvre, B., and Kašička, L., A probable case of heterochrony in the solutan Dendrocystites Barrande, 1887 (Echinodermata: Blastozoa) from the Upper Ordovician of the Prague Basin (Czech Republic) and a revision of the family Dendrocystitidae Bassler, 1938, Bull. Geosci., 2014, vol. 89, no. 3, pp. 451–476.

    Article  Google Scholar 

  26. Lefebvre B., Guensburg T., Martin, E., et al., Exceptionally preserved soft parts in fossils from the Lower Ordovician of Morocco clarify stylophoran affinities within basal deuterostomes, Geobios, 2019, vol. 52, pp. 27–36.

    Article  Google Scholar 

  27. Lefebvre, B. and Lerosey-Aubril, R., Laurentian origin of solutan echinoderms: new evidence from the Guzhangian (Cambrian Series 3) Weeks Formation of Utah, USA, Geol. Mag., 2018, vol. 155, vol. 5, pp. 1190–1204. https://doi.org/10.1017/S0016756817000152

  28. Parsley, R.L., The echinoderm classes Stylophora and Homoiostelea: non Calcichordata, Paleontol. Soc. Pap., 1997, vol. 3, pp. 225–248.

    Article  Google Scholar 

  29. Parsley, R.L., The Cincta (Homostelea) as blastozoans, in Echinoderm Research 1998, Candia Carnevali, M.D. and Bonasoro, F., Eds., Rotterdam: A.A. Balkema, 1999, pp. 369–375.

    Google Scholar 

  30. Parsley, R.L. and Caster, K.E., North American Soluta (Carpoidea, Echinodermata), Bull. Am. Paleontol., 1965, vol. 49, no. 221, pp. 109–174.

    Google Scholar 

  31. Parsley, R.L., Rozhnov, S.V., and Sumrall, C.D., Morphologic and systematic revision of the solute Manila estonica (Homoiostelea, Echinodermata) from the Upper Ordovician of Estonia, J. Paleontol., 2012, vol. 86, no. 3, pp. 462–469. https://doi.org/10.1666/11-083.1

    Article  Google Scholar 

  32. Rahman, I.A. and Zamora, S., The oldest cinctan caproid (stem-group Echinodermata), and the evolution of the water vascular system, Zool. J. Linn. Soc., 2009, vol. 157, no. 2, pp. 420–432. https://doi.org/10.1111/j.1096-3642.2008.00517.x

    Article  Google Scholar 

  33. Rozhnov, S.V., Crookedness of the stem and crown of pelmatozoan echinoderms as resulting from different kinds of heterochrony, in Echinoderm Res. 1998, Carnevali, M.D.C. and Bonasoro, F., Eds., Rotterdam: A.A. Balkema, 1998, pp. 385–390.

    Google Scholar 

  34. Rozhnov, S.V., Morphogenesis and evolution of crinoids and other pelmatozoan echinoderms in the Early Paleozoic, Paleontol. J., 2002, vol. 36, Suppl. 6, pp. S525–S674.

    Google Scholar 

  35. Rozhnov, S.V., Development of the trophic structure of Vendian and Early Paleozoic marine communities, Paleontol. J., 2009a, vol. 43, no. 11, pp. 1364–1367.

    Article  Google Scholar 

  36. Rozhnov, S.V., The role of heterochrony in the establishment of body plan in higher echinoderm taxa, Biol. Bull., 2009b, vol. 36, no. 2, pp. 117–127.

    Article  Google Scholar 

  37. Rozhnov, S.V., Combinatorial model for the formation of body plans in higher metazoan taxa: Paleontological insight, Paleontol. J., 2011, vol. 44, no. 12, pp. 1500–1508.

    Article  Google Scholar 

  38. Rozhnov, S.V., The anteroposterior axis in echinoderms and displacement of the mouth in their phylogeny and ontogeny, Biol. Bull., 2012a, vol. 39, no. 2, pp. 162–171.

    Article  Google Scholar 

  39. Rozhnov, S.V., Development of symmetry and asymmetry in the early evolution of the echinoderms, Paleontol. J., 2012b, vol. 46, no. 8, pp. 780–792.

    Article  Google Scholar 

  40. Rozhnov, S.V., Symmetry of echinoderms: From initial bilaterally-asymmetric metamerism to pentaradiality, Nat. Sci., 2014, vol. 6, no. 4, pp. 171–183.https://doi.org/10.4236/ns.2014.64021

    Article  Google Scholar 

  41. Rozhnov, S.V., The origin and homology of the jointed appendages of carpoid and pelmatozoan echinoderms, Invertebr. Zool., 2017, vol. 14, no. 2, pp. 174–181. https://doi.org/10.15298/invertzool.14.2.12

    Article  Google Scholar 

  42. Rozhnov, S.V. and Jefferies, R.P.S., A new stem-chordate solute from the Middle Ordovician of Estonia, Geobios, 1996, vol. 29, pp. 91–109. https://doi.org/10.1016/S0016-6995(96)80074-x

    Article  Google Scholar 

  43. Rozhnov, S.V. and Parsley, R.L., A new cornute (Homalozoa: Echinodermata) from the uppermost Middle Cambrian (Stage 3, Furongian) from Northern Iran: Its systematics and functional morphology, Paleontol. J., 2017, vol. 51, no. 5, pp. 500–509. https://doi.org/10.1134/S0031030117050100

    Article  Google Scholar 

  44. Smith, A.B., The pre-radial history of echinoderms, Geol. J., 2005, vol. 40, pp. 255–280. https://doi.org/10.1002/gj.1018

    Article  Google Scholar 

  45. Smith, A.B., Deuterostomes in a twist: the origins of a radical new body plan, Evol. Dev., 2008, vol. 10, pp. 493–503.https://doi.org/10.1111/j.1525-142X.2008.00260.x

    Article  Google Scholar 

  46. Smith, A.B. and Zamora, S., Rooting phylogenies of problematic fossil taxa; a case study using cinctans (stem-group echinoderms), Palaeontology, 2009, vol. 52, pp. 803–821.https://doi.org/10.1111/j.1475-4983.2009.00880.x

    Article  Google Scholar 

  47. Szabó, R. and Ferrier, D.E.K., Two more posterior Hox genes and Hox cluster dispersal in echinoderms, BMC Evol. Biol., 2018, vol. 18, no. 1, p. 203.https://doi.org/10.1186/s12862-018-1307-x

    Article  Google Scholar 

  48. Tsuchimoto, J. and Yamaguchi, M., Hox expression in the direct-type developing sand dollar Peronella japonica, Dev. Dynam., 2014, vol. 243, no. 8, pp. 1020–1029. https://doi.org/10.1002/dvdy.24135

  49. Zhang, X., Sun, L., Yaun, J., et al., The sea cucumber genome provides insights into morphological evolution and visceral regeneration, PLoS Biol, 2017, vol. 15, e2003790.

    Article  Google Scholar 

  50. Zuykov, M.A., Terentiev, S.S., and Harper, D.A.T., New endemic brachiopod and echinoderm genera from the Upper Ordovician of the St Petersburg region, northwestern Russia, Geol. Fören. Stockholm Förhandl., 2008, vol. 130, pp. 87–93.

    Google Scholar 

Download references

ACKNOWLEDGMENTS.

I am sincerely grateful to the reviewers V.V. Isaeva and G.A. Mirantsev for valuable comments, G.A. Anekeeva for help in preparing the drawings and discussion of this work. Special thanks to S.S. Terentiev for providing the previously unpublished drawings and reconstruction of the rhombiferan Fusicystis magnificus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Rozhnov.

Ethics declarations

The author declares that he has no conflict of interest.

Additional information

Translated by S. Nikolaeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozhnov, S.V. Solutans (Echinoderms): Evolution Frozen between Torsion and Pentaradiality. Paleontol. J. 56, 1306–1321 (2022). https://doi.org/10.1134/S0031030122110144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030122110144

Keywords: