Skip to main content

Advertisement

Log in

Marriage Market with Indifferences: A Linear Programming Approach

  • Published:
Journal of the Operations Research Society of China Aims and scope Submit manuscript

Abstract

We study stable and strongly stable matchings in the marriage market with indifference in their preferences. We characterize the stable matchings as integer extreme points of a convex polytope. We give an alternative proof for the integrity of the strongly stable matching polytope. Also, we compute men-optimal (women-optimal) stable and strongly stable matchings using linear programming. When preferences are strict, we find the men-optimal (women-optimal) stable matching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See Roth and Sotomayor [1] for a more detailed explanation.

  2. Irving [2] refered to stable matchings as weakly stable matchings.

  3. Vande Vate [9] characterized stable matchings as extreme points of a linear inequality system in a market when all agents are mutually acceptable, and the set of men and women has the same number of agents.

  4. This assumption is commonly used in the literature; see Erdil and Ergin [4] and [14] and Biró and McBride [18].

  5. Item 3 is equivalent to say that \(\mu \) is a homogeneous function of order two, i.e., \(\mu ^{2}\left( i\right) =i,\) for all \(i\in M\cup W.\)

  6. When there is no need to stress the role of \(m'\) in the cycle, we omit the sub index.

  7. The extreme points of \(C_{IR(R)}\) are exactly the individually rational matchings.

  8. Symmetrically, we can define these weights depending on women’s preferences.

  9. 2. \(\alpha _{m,w}=\alpha _{m,w^{\prime }}\) when \(wI_{m}w^{\prime }.\)

References

  1. Roth, A. E., Sotomayor, M. A. O.: Two-Sided Matching: A Study in Game-Theoretic Modeling and Analysis. Cambidge University Press, Cambridge (1990)

  2. Irving, R. W.: Stable marriage and indifference. Discrete Appl. Math. 48(3), 261–272 (1994)

  3. Gale, D., Shapley, L.: College admissions and the stability of marriage. Am. Math. Mon. 69(1), 9–15 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  4. Erdil, A., Ergin, H.: Two-Sided Matching with Indifferences. J. Econ. Theory 171(C), 268–292 (2017)

  5. Abdulkadiroğlu, A., Pathak, P., Roth, A.: Strategy-proofness versus efficiency in matching with indifferences: Redesigning the NYC high school match. Am. Econ. Rev. 99(5), 1954–1978 (2009)

  6. Manlove, D., Irving, R., Iwama, K., Miyazaki, S., Morita, Y.: Hard variants of stable marriage. Theoret. Comput. Sci. 276(1–2), 261–279 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ghosal, P., Kunysz, A., Paluch, K.: Characterisation of strongly stable matchings. In: Proceedings of the Twenty-seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 107–119. SIAM (2016)

  8. Rothblum, U.: Characterization of stable matchings as extreme points of a polytope. Math. Program. 54(1–3), 57–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Vande Vate, J.: Linear programming brings marital bliss. Oper. Res. Lett. 8(3), 147–153 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Roth, A., Rothblum, U., Vande Vate, J.: Stable matchings, optimal assignments, and linear programming. Math. Oper. Res. 18(4), 803–828 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kwanashie, A., Manlove, D. F.: An integer programming approach to the hospitals/residents problem with ties. In: Operations Research Proceedings 2013, pp. 263–269. Springer (2014)

  12. Kunysz, A.: An algorithm for the maximum weight strongly stable matching problem. In: 29th International Symposium on Algorithms and Computation (ISAAC 2018), pp. 1–42. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)

  13. Spieker, B.: The set of super-stable marriages forms a distributive lattice. Discrete Appl. Math. 58(1), 79–84 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Erdil, A., Ergin, H.: What’s the matter with tie-breaking? Improving efficiency in school choice. Am. Econ. Rev. 98(3), 669–689 (2008)

    Article  Google Scholar 

  15. Baïou, M., Balinski, M.: The stable admissions polytope. Math. Program. 87(3), 427–439 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Király, T., Pap, J.: Total dual integrality of Rothblum’s description of the stable-marriage polyhedron. Math. Oper. Res. 33(2), 283–290 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, X., Ding, G., Hu, X., Zang, W.: The maximum-weight stable matching problem: Duality and efficiency. SIAM J. Discrete Math. 26(3), 1346–1360 (2012)

  18. Biró, P., McBride, I.: Integer programming methods for special college admissions problems. In: International Conference on Combinatorial Optimization and Applications, pp. 429–443. Springer (2014)

  19. Birkhoff, G.: Tres observaciones sobre el algebra lineal. Univ. Nac. Tucumán Rev. Ser. 5(A), 147–151 (1946)

    Google Scholar 

  20. McVitie, D., Wilson, L.: Stable marriage assignment for unequal sets. BIT Numer. Math. 10(3), 295–309 (1970)

    Article  MATH  Google Scholar 

  21. Knuth, D.: Stable Marriage and its Relation to Other Combinatorial Problems: An Introduction to the Mathematical Analysis of Algorithms, vol. 10. American Mathematical Soc. (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noelia Juarez.

Additional information

We acknowledge financial support from UNSL (No. 032016 and 030320), from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)(No. PIP 112-200801-00655), and from Agencia Nacional de Promoción Científica y Tecnológica (No. PICT 2017-2355).

Appendix

Appendix

The following example shows how the selection of weights influences the optimal solution reached.

Example 4

Let \(M=\left\{ m_{1},m_{2}\right\} \), \(W=\left\{ w_{1},w_{2},w_{3},w_{4}\right\} \) and the preference profile R

$$\begin{aligned} \begin{array}{ll} R_{m_{1}}:\left[ w_{1},w_{2}\right] ,w_{3},w_{4}; ~~~~~~ &{} R_{w_{1}}:\left[ m_{1},m_{2}\right] ; \\ R_{m_{2}}:w_{1},w_{3},w_{2}; ~~~~~~ &{} R_{w_{2}}:m_{2}; \\ ~~~~~~ &{} R_{w_{3}}:m_{2}; \\ ~~~~~~ &{} R_{w_{4}}:m_{1}. \end{array} \end{aligned}$$

\(S\left( R\right) =\left\{ \mu _{1},\mu _{2}\right\} \) is given by

$$\begin{aligned} x^{\mu _{1}}=\left( \begin{array}{cccc} 1 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 1 &{} 0 \end{array} \right) \mathrm{and} ~~~x^{\mu _{2}}=\left( \begin{array}{cccc} 0 &{} 0 &{} 0 &{} 1 \\ 1 &{} 0 &{} 0 &{} 0 \end{array} \right) . \end{aligned}$$

Both matchings are men-optimal.

   Consider two different selections of weights:

$$\begin{aligned} \alpha = \left( \begin{array}{cccc} 3 &{} 3 &{} 2 &{} 1 \\ 3 &{} 1 &{} 2 &{} 0 \end{array} \right) \mathrm{and}~~\alpha ^{\star }=\left( \begin{array}{cccc} 3 &{} 3 &{} 2 &{} 1 \\ 30 &{} 10 &{} 20 &{} 0 \end{array} \right) . \end{aligned}$$

If we compute the IPS, the solution will be a men-optimal stable matching for any selection of weights. Despite this, the solution of IPS with the weights \(\alpha _{i,j}\) will be the stable matching \(\mu _{1}.\) Meanwhile, the solution of \({\mathrm{IPS}^\star }\) with the weights \(\alpha ^\star _{i,j}\) will be the stable matching \(\mu _{2}.\) So, the solution depends on the selection of the weights.

The following example shows that for a marriage market with indifferences, if we change the linear program from a maximization problem to a minimization problem, the new linear program does not compute one of the women-optimal stable matchings.

Example 5

Let \(M=\left\{ m_{1},m_{2},m_{3}\right\} \), \(W=\left\{ w_{1},w_{2},w_{3}\right\} \) and the preference profile R be such that

$$\begin{aligned} \begin{array}{ll} R_{m_{1}}=\left[ w_{1},w_{2}\right] ,w_{3}; ~~~~~~ &{} R_{w_{1}}=m_{1},m_{2},m_{3}; \\ R_{m_{2}}=\left[ w_{1},w_{2}\right] ,w_{3}; ~~~~~~ &{} R_{w_{2}}=\left[ m_{1},m_{2},m_{3}\right] ; \\ R_{m_{3}}=w_{1},w_{2},w_{3}; ~~~~~~ &{} R_{w_{3}}=m_{1},m_{2},m_{3}. \end{array} \end{aligned}$$

\(S\left( R\right) =\left\{ \mu _{1},\mu _{2},\mu _{3}\right\} \) is given by

$$\begin{aligned} x^{\mu _{1}}=\left( \begin{array}{ccc} 1 &{} 0 &{} 0 \\ 0 &{} 1 &{} 0 \\ 0 &{} 0 &{} 1 \end{array} \right) ,~ x^{\mu _{2}}=\left( \begin{array}{ccc} 0 &{} 1 &{} 0 \\ 1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 1 \end{array} \right) ,~ x^{\mu _{3}}=\left( \begin{array}{ccc} 1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 1 \\ 0 &{} 1 &{} 0 \end{array} \right) . \end{aligned}$$

Notice that \(\mu _{3}\) is the unique women-optimal stable matching.

Consider the selection of weights:

$$\begin{aligned} \alpha =\left( \begin{array}{ccc} 2 &{} 2 &{} 1 \\ 2 &{} 2 &{} 1 \\ 30 &{} 20 &{} 1 \end{array} \right) . \end{aligned}$$

If we compute the IPS (minimization),

$$\begin{aligned} \begin{array}{ccc} \mathrm{IPS} ~~~~~~ &{} \min &{} \sum \limits _{(i,j)\in A}\alpha _{i,j}x_{i,j} \\ ~~~~~~ &{} \text{ s.t. } &{} x\in C^{*},~x\in \{0,1\}. \end{array} \end{aligned}$$

The solutions of IPS are the stable matchings \(\mu _{1}\) and \( \mu _{2},\) which are not woman-optimal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juarez, N., Neme, P.A. & Oviedo, J. Marriage Market with Indifferences: A Linear Programming Approach. J. Oper. Res. Soc. China 11, 219–242 (2023). https://doi.org/10.1007/s40305-021-00360-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40305-021-00360-x

Keywords

Mathematics Subject Classification