Citation: | YANG Jianle, WU Nan. Mechanism of Action of Antisense Oligonucleotides and Their Research Progress in the Musculoskeletal System[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(4): 891-896. DOI: 10.12290/xhyxzz.2023-0656 |
Antisense oligonucleotides(ASOs) are a novel class of small molecule gene-targeted drugs that can bind with target mRNA. Through complementary base pairing with the target sequence, antisense oligonucleotides achieve targeted regulation of genes. With the continuous development of gene sequencing technology and molecular synthesis techniques, research and applications of ASOs in the musculoskeletal system have further advanced. This article reviews the mechanisms of ASOs in gene silencing and expression regulation, as well as their prospects in gene therapy. It also evaluates the research progress and applications of ASOs in musculoskeletal diseases and analyzes the urgent issues currently faced by this class of drugs. This comprehensive study aims to deepen our understanding of ASOs and provide valuable reference for their widespread application in biomedical research and clinical settings.
[1] |
Doudna J A, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9[J]. Science, 2014, 346(6213): 1258096. DOI: 10.1126/science.1258096
|
[2] |
Happi Mbakam C, Lamothe G, Tremblay G, et al. CRISPR-Cas9 gene therapy for Duchenne muscular dystrophy[J]. Neurotherapeutics, 2022, 19(3): 931-941. DOI: 10.1007/s13311-022-01197-9
|
[3] |
Fujita K I, Ishizuka T, Mitsukawa M, et al. Regulating divergent transcriptomes through mRNA splicing and its modulation using various small compounds[J]. Int J Mol Sci, 2020, 21(6): 2026. DOI: 10.3390/ijms21062026
|
[4] |
Li X Y, Pu W C, Zheng Q Q, et al. Proteolysis-targeting chimeras(PROTACs) in cancer therapy[J]. Mol Cancer, 2022, 21(1): 99. DOI: 10.1186/s12943-021-01434-3
|
[5] |
Goga A, Stoffel M. Therapeutic RNA-silencing oligonucleotides in metabolic diseases[J]. Nat Rev Drug Discov, 2022, 21(6): 417-439. DOI: 10.1038/s41573-022-00407-5
|
[6] |
Crooke S T, Baker B F, Crooke R M, et al. Antisense technology: an overview and prospectus[J]. Nat Rev Drug Discov, 2021, 20(6): 427-453. DOI: 10.1038/s41573-021-00162-z
|
[7] |
Bennett C F. Therapeutic antisense oligonucleotides are coming of age[J]. Annu Rev Med, 2019, 70: 307-321. DOI: 10.1146/annurev-med-041217-010829
|
[8] |
Finkel R S, Mercuri E, Darras B T, et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy[J]. N Engl J Med, 2017, 377(18): 1723-1732. DOI: 10.1056/NEJMoa1702752
|
[9] |
De Smet M D, Meenken C J, Van Den Horn G J. Fomivirsen-a phosphorothioate oligonucleotide for the treatment of CMV retinitis[J]. Ocul Immunol Inflamm, 1999, 7(3/4): 189-198.
|
[10] |
Ionis Pharmaceuticals, Inc. A phase 1/2a study to assess the safety, tolerability, pharmacokinetics and pharmacodynamics of single and multiple doses of IONIS-ENaCRx in healthy volunteers and patients with cystic fibrosis[EB/OL ]. (2021-02-04)[2023-12-27. https://classic.clinicaltrials.gov/ct2/show/NCT03647228.
|
[11] |
Liang X H, Sun H, Nichols J G, et al. RNase H1-dependent antisense oligonucleotides are robustly active in directing RNA cleavage in both the cytoplasm and the nucleus[J]. Mol Ther, 2017, 25(9): 2075-2092. DOI: 10.1016/j.ymthe.2017.06.002
|
[12] |
Crooke S T. Molecular mechanisms of antisense oligonucleotides[J]. Nucleic Acid Ther, 2017, 27(2): 70-77. DOI: 10.1089/nat.2016.0656
|
[13] |
Reid I R, Billington E O. Drug therapy for osteoporosis in older adults[J]. Lancet, 2022, 399(10329): 1080-1092. DOI: 10.1016/S0140-6736(21)02646-5
|
[14] |
Canalis E, Grossman T R, Carrer M, et al. Antisense oligonucleotides targeting Notch2 ameliorate the osteopenic phenotype in a mouse model of Hajdu-Cheney syndrome[J]. J Biol Chem, 2020, 295(12): 3952-3964. DOI: 10.1074/jbc.RA119.011440
|
[15] |
Sharma L. Osteoarthritis of the knee[J]. N Engl J Med, 2021, 384(1): 51-59. DOI: 10.1056/NEJMcp1903768
|
[16] |
Nakamura A, Rampersaud Y R, Nakamura S, et al. MicroRNA-181a-5p antisense oligonucleotides attenuate osteoarthritis in facet and knee joints[J]. Ann Rheum Dis, 2019, 78(1): 111-121. DOI: 10.1136/annrheumdis-2018-213629
|
[17] |
Tamura R. Current understanding of neurofibromatosis type 1, 2, and schwannomatosis[J]. Int J Mol Sci, 2021, 22(11): 5850. DOI: 10.3390/ijms22115850
|
[18] |
Leier A, Moore M, Liu H, et al. Targeted exon skipping of NF1 exon 17 as a therapeutic for neurofibromatosis type I[J]. Mol Ther Nucleic Acids, 2022, 28: 261-278. DOI: 10.1016/j.omtn.2022.03.011
|
[19] |
Aartsma-Rus A, Ginjaar I B, Bushby K. The importance of genetic diagnosis for Duchenne muscular dystrophy[J]. J Med Genet, 2016, 53(3): 145-151. DOI: 10.1136/jmedgenet-2015-103387
|
[20] |
Verhaart I E C, Aartsma-Rus A. Therapeutic developments for Duchenne muscular dystrophy[J]. Nat Rev Neurol, 2019, 15(7): 373-386. DOI: 10.1038/s41582-019-0203-3
|
[21] |
Patterson G, Conner H, Groneman M, et al. Duchenne muscular dystrophy: current treatment and emerging exon skipping and gene therapy approach[J]. Eur J Pharmacol, 2023, 947: 175675. DOI: 10.1016/j.ejphar.2023.175675
|
[22] |
Cirak S, Arechavala-Gomeza V, Guglieri M, et al. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study[J]. Lancet, 2011, 378(9791): 595-605. DOI: 10.1016/S0140-6736(11)60756-3
|
[23] |
Frank D E, Schnell F J, Akana C, et al. Increased dystrophin production with golodirsen in patients with Duchenne muscular dystrophy[J]. Neurology, 2020, 94(21): e2270-e2282.
|
[24] |
Mercuri E, Sumner C J, Muntoni F, et al. Spinal muscular atrophy[J]. Nat Rev Dis Primers, 2022, 8(1): 52. DOI: 10.1038/s41572-022-00380-8
|
[25] |
Fang T, Je G, Pacut P, et al. Gene therapy in amyotrophic lateral sclerosis[J]. Cells, 2022, 11(13): 2066. DOI: 10.3390/cells11132066
|
[26] |
Miller T M, Cudkowicz M E, Genge A, et al. Trial of antisense oligonucleotide tofersen for SOD1 ALS[J]. N Engl J Med, 2022, 387(12): 1099-1110. DOI: 10.1056/NEJMoa2204705
|
[27] |
Chi X, Gatti P, Papoian T. Safety of antisense oligonucleotide and siRNA-based therapeutics[J]. Drug Discov Today, 2017, 22(5): 823-833. DOI: 10.1016/j.drudis.2017.01.013
|
[28] |
Ramasamy T, Ruttala H B, Munusamy S, et al. Nano drug delivery systems for antisense oligonucleotides(ASO) therapeutics[J]. J Control Release, 2022, 352: 861-878. DOI: 10.1016/j.jconrel.2022.10.050
|
[29] |
Debacker A J, Voutila J, Catley M, et al. Delivery of oligonucleotides to the liver with GalNAc: from research to registered therapeutic drug[J]. Mol Ther, 2020, 28(8): 1759-1771. DOI: 10.1016/j.ymthe.2020.06.015
|
[30] |
Roberts T C, Langer R, Wood M J A. Advances in oligonucleotide drug delivery[J]. Nat Rev Drug Discov, 2020, 19(10): 673-694. DOI: 10.1038/s41573-020-0075-7
|
[1] | KONG Linghua, XIAO Xiaoping, WAN Ru, XIANG Yang. Clinical Application of ThinPrep Imaging System in Cervical Cytology[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(4): 613-619. DOI: 10.12290/xhyxzz.2022-0221 |
[2] | XU Haojie, WANG Lu, LIU Mingjuan, ZHAO Lidan. Analysis of Integrating Training in Scientific Research and Clinical Practice among Current Medical Postgraduates of Three Academic Systems[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(1): 66-73. DOI: 10.12290/xhyxzz.2021-0623 |
[3] | Gynecological Oncology Society of Chinese Medical Association. Clinical Practice Guidelines for Immune Checkpoint Inhibitor Therapy in Gynecological Tumors[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(6): 854-880. DOI: 10.12290/xhyxzz.2021-0683 |
[4] | YU Songlin, WANG Danchen, ZOU Yutong, MA Xiaoli, QIU Ling. The Clinical Application of Liquid Chromatography-Tandem Mass Spectrometry in the Diagnosis of Rare Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(4): 450-455. DOI: 10.12290/xhyxzz.2021-0324 |
[5] | Li-fan ZHANG, Xiao-qing LIU. Study Design and Clinical Practice of Diagnostic Accucary Test[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(1): 96-101. DOI: 10.3969/j.issn.1674-9081.20190276 |
[6] | Yuan XIA, Xiang-pei LI. The Role of MicroRNA Regulation of Interferon-α in the Pathogenesis of Systemic Lupus Erythematosus[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(6): 673-678. DOI: 10.3969/j.issn.1674-9081.2019.06.021 |
[7] | Shan-shan YOU, Zhong-hui XU, Yu-xin JIANG. Musculoskeletal Ultrasound in the Diagnosis and Treatment of Rheumatoid Arthritis[J]. Medical Journal of Peking Union Medical College Hospital, 2017, 8(4-5): 215-220. DOI: 10.3969/j.issn.1674-9081.2017.05.005 |
[8] | Hong-lian GAO, Shou-qing LIN, Ying CHEN, Yang WEI, Zheng-lai WU, Ya-ping WANG, Rong CHEN. Impact of Menstrual Status on Musculoskeletal Pain[J]. Medical Journal of Peking Union Medical College Hospital, 2016, 7(4): 241-245. DOI: 10.3969/j.issn.1674-9081.2016.04.001 |
[9] | Yu-mei JIN, Feng-rong AI, Yan LUO, Ying LI. Comparison of Central Corneal Thickness Before and After Mydriasis Measured with A-ultrasound Pachymetry and Pentacam Scheimpflug System[J]. Medical Journal of Peking Union Medical College Hospital, 2013, 4(4): 429-432. DOI: 10.3969/j.issn.1674-9081.2013.04.017 |
[10] | Xiao-hua SHI, Zhi-yong LIANG, Huan-wen WU, Xin-yu REN, Tong-hua LIU. Effect of RNA Interference Plasmid on the Expression of Oncogene AKT2 in Pancreatic Cancer Cell Line Panc-1[J]. Medical Journal of Peking Union Medical College Hospital, 2012, 3(1): 102-108. DOI: 10.3969/j.issn.1674-9081.2012.01.021 |