-
摘要: 目前临床用血供不应求, 尽管自体输血等血液保护技术可部分缓解此类情况, 但红细胞作为主要的血液成分需求量巨大, 而体外生产安全的红细胞则可解决这一难题。目前研究显示, 可从胚胎干细胞、人诱导多能干细胞、脐带血、外周血和永生化红系祖细胞系几种来源分化出成熟红细胞。本文就体外生产红细胞的来源及应用进行综述, 并分析目前所面临的挑战, 以期为输血治疗提供新思路。Abstract: Although blood protection technologies such as autologous blood transfusion can alleviate to some extent the short supply of clinical blood, red blood cells are still in great demand as the main blood component. This problem can be solved by the safe production of red blood cells in vitro. At present, mature erythrocytes can be differentiated from embryonic stem cells, human induced pluripotent stem cells, umbilical cord blood, peripheral blood, and immortalized erythroid progenitor cell lines. This article reviews the sources and applications of red blood cells produced in vitro, and analyzes the current challenges, in order to provide new insights for blood transfusion therapy.
-
近年来,关于如何界定缓和医疗照护对象的讨论正在悄然展开,并已引起多个领域(包括但不限于临床专业、政策制定、医疗体制改革、法律伦理和投资实业等)专家的关注。本文从推广生前预嘱(living will)的角度就这一问题展开讨论。
北京生前预嘱推广协会是于2013年注册成立的公益性社团组织。生前预嘱是指人们在健康或意识清楚时事先签署的指示性文件,阐明当其在不可治愈的伤病末期或临终时要或不要哪种医疗照护[1]。目前,世界上所有提供缓和医疗服务的国家和地区,均将生前预嘱以及具有表达个人意愿功能的相似文件作为开展此项医疗服务的合法性前提[2]。缓和医疗相关国家政策、临床实践与理论的发展,则是生前预嘱推广的必要条件。因此,本协会将推广生前预嘱和缓和医疗作为并驾齐驱的两项日常工作。
2010—2016年,本协会委托多名两会代表(胡定旭、凌峰、陶斯亮、顾晋等)连续数年提案,在中国现有法律环境下推广生前预嘱,以期建立政府指导下全方位分层次的缓和医疗服务。2015年,本协会受邀参加由时任全国政协主席俞正声支持、全国政协教科文卫体委员会开展的全国调研,该项工作围绕如何“推动安宁疗护发展”展开,对多地进行了为期8个月的走访和深度观察。2016年4月,俞正声主持并召开全国政协第49次双周协商座谈会,围绕“推进安宁疗护工作”建言献策。时任协会总干事罗峪平和香港医管局局长、协会专委会主席胡定旭参加会议并发言[3]。在调研和会议准备的过程中,我们竭力主张中国现代缓和医疗应从一开始就把照护对象尽量扩大化,主要依据是缓和医疗的定义一直在变化。
最广为人知和接受的缓和医疗定义由世界卫生组织(World Health Organization,WHO) 于2002年制定:缓和医疗是一种提供给患有危及生命疾病的患者和家庭的,旨在提高其生活质量及应对危机能力的系统方法;通过对痛苦和疼痛的早期识别,以严谨的评估和有效管理,满足患者及家庭的所有(包括心理和精神)需求[4]。2020年WHO发布了该定义的修订版,简化了语言表述,之前难以翻译成各国语言的措辞也得到纠正:缓和医疗是一种改善患有危及生命疾病的患者(成人和儿童)及其家人生活质量的方法;其通过早期识别,正确评估、治疗疼痛和其他身体、心理、精神问题以预防和减轻痛苦[5]。更新版定义列出了可能需要缓和医疗的最常见病症,但这些常见病症并无一份详尽的清单,疾病本身的诊断也并非获得缓和医疗服务的标准,因此对于缓和医疗照护对象的界定仍存在争议。
与此同时,国际安宁缓和医疗协会(International Association for Hospice & Palliative Care,IAHPC)提出了更具专业视角的缓和医疗新定义:缓和医疗是对因严重疾病而遭受严重健康损害的所有年龄段的个人,尤其是对生命终末期患者,所进行的积极全面的照护。该定义旨在提高个人及其家属和照护者的生活质量[6]。尽管这一定义与WHO的定义存在差异,但优先考虑舒适、尊严和共同决策,界定的目标人群为“患有严重疾病的人,不论年龄大小”,并不强调疾病的死亡率,而仅强调其严重性,建议从疾病一开始就实施缓和医疗,此表述符合多数人对缓和医疗的期盼,其一经发布即得到全球180个安宁疗护与缓和医疗组织和学术中心的支持[7]。
通过与调研专家团进行充分讨论,最终大家一致认为,从国家目前医疗体制的实际情况出发,对以癌症为主的终末期患者进行照护(后来被命名为“安宁疗护”)开始,可更快地使国家职能部门找到推广的抓手,具有更好的操作性,也更符合我国国情。而医保支付系统和商业保险等各相关领域在逐步积累数据的过程中,也能够留出充足的计算和决策空间,从而促使缓和医疗理念以更合理的速度长入复杂社会的“肌体”。随后,国家卫生健康委正式发布了安宁疗护标准和管理规范,并陆续推出三批安宁疗护试点城市。自此,安宁疗护作为现代缓和医疗的一部分开始快速发展,使更多人在了解安宁疗护的同时也对缓和医疗理念有了深入了解。从目前所取得的成果来看,这一“小切口”的决策更趋合理,使得缓和医疗的推广更易落实和操作。
全球老龄化日益加剧、感染性疾病大流行以及战争和气候变化带来的人道灾难,均将继续影响缓和医疗照护对象的界定。各国政府和各类组织将依据自身所处的不同环境作出不同决策,并不断修正和完善。不仅如此,生前预嘱的概念和推广方式也在经历一轮又一轮的更新和变化。
预立照护计划(advance care planning,ACP)是针对原有生前预嘱概念的迭代性文件。完整的ACP一般包括充分的个人意愿表达、指定的医疗代理人和可被执行的临床医嘱三部分,旨在通过患者、家属(或医疗代理人)和临床医生的充分协商,对诸如临终是否使用生命支持系统、是否充分镇痛等作出最大限度优化患者利益的共同决策。其优点在于可最大限度保障在长期照护机构、养老院、护理院、紧急医疗部门和医院各科室之间完整信息的传送和使用。目前,此类由医护人员主张形成的具有专业特点的措施,已经展现出良好的效果。2019年,由美国政府购买服务的美国生前预嘱注册中心(U.S. Living Will Registry)也因此改名为美国预立照护计划注册中心(U.S. Advance Care Plan Registry)[1]。
鉴于此,未来本协会的生前预嘱推广工作将增添新的重要内容——积极推动在现有法律环境下,在医政医管职权范围内,将统一制作的ACP文本放入住院病案首页,纳入病案级管理。这不仅有利于缓和医疗照护全过程的正确对接,还能够指导临床医护人员深入了解和掌握缓和医疗的基本概念和技能。标准ACP制作流程见图 1。
缓和医疗的本质是对人的尊重,是在科技时代人们对生命本质重新认识的产物,而缓和医疗照护对象的界定亦无可争议地会随着国家经济和文明水平的发展而不断被修正和完善。北京生前预嘱推广协会作为推广生前预嘱和“尊严死”理念的社会组织,秉承“推广生前预嘱,让更多人知道,按照本人意愿,尽量以自然和有尊严的方式离世,是对生命的珍惜和热爱”的使命,殷切而充满信心地期待安宁缓和医疗在不久的将来,能够成为人人享有的基本权利。
作者贡献:王辉负责文献检索及论文撰写;张进进、陈立力负责论文修订;邢颜超负责选题设计及论文审校。利益冲突:所有作者均声明不存在利益冲突 -
表 1 不同途径体外生产红细胞的区别
Table 1 Differences in in vitro production of red blood cells by different approaches
来源 血红蛋白类型 扩增倍数 去核率 文献 人胚胎干细胞 成人血红蛋白(HBA、HBB基因);胎儿血红蛋白(HBG基因);胚胎血红蛋白(HBZ、HBE1基因) 约10倍 很低 Wang等[5] 人诱导多能干细胞 成人血红蛋白;胎儿血红蛋白;胚胎血红蛋白 平均800倍,最大1000倍 平均40%,最大60% Bernecker等[6] 脐带血单核细胞 成人血红蛋白;胎儿血红蛋白 约7倍 约85% Rallapalli等[7] 脐带血CD34+细胞 成人血红蛋白(HBA、HBB基因);胎儿血红蛋白(HBG基因) 约35000倍 约50% Wang等[5] 外周血单核细胞 成人血红蛋白;胎儿血红蛋白 约1012倍 约50% Liu等[8] 永生化红系组细胞系 BEL-P:成人血红蛋白、极少胎儿血红蛋白;BEL-C:胎儿血红蛋白、极少成人血红蛋白 约20倍 约26% Daniels等[9] -
[1] 中华人民共和国国家卫生健康委员会规划发展与信息化司. 2021年我国卫生健康事业发展统计公报[EB/OL]. (2022-07-12)[2023-06-18]. http://www.nhc.gov.cn/guihuaxxs/s3586s/202207/51b55216c2154332a660157abf28b09d.shtml. Planning, Development and Informatization Department of the National Health Commission of the People's Republic of China. Statistical bulletin on the development of health care in China in 2021[EB/OL]. (2022-07-12)[2023-06-18]. http://www.nhc.gov.cn/guihuaxxs/s3586s/202207/51b55216c2154332a660157abf28b09d.shtml.
[2] Franchini M, Forni G L, Marano G, et al. Red blood cell alloimmunisation in transfusion-dependent thalassaemia: a systematic review[J]. Blood Transfus, 2019, 17(1): 4-15.
[3] Jahr J S, Guinn N R, Lowery D R, et al. Blood substitutes and oxygen therapeutics: a review[J]. Anesth Analg, 2021, 132(1): 119-129. DOI: 10.1213/ANE.0000000000003957
[4] Bernecker C, Matzhold E M, Kolb D, et al. Membrane properties of human induced pluripotent stem cell-derived cultured red blood cells[J]. Cells, 2022, 11(16): 2473. DOI: 10.3390/cells11162473
[5] Wang S H, Zhao H Z, Zhang H, et al. Analyses of erythropoiesis from embryonic stem cell-CD34+ and cord blood-CD34+ cells reveal mechanisms for defective expansion and enucleation of embryomic stem cell-erythroid cells[J]. J Cell Mol Med, 2022, 26(8): 2404-2416. DOI: 10.1111/jcmm.17263
[6] Bernecker C, Ackermann M, Lachmann N, et al. Enhanced ex vivo generation of erythroid cells from human induced pluripotent stem cells in a simplified cell culture system with low cytokine support[J]. Stem Cells Dev, 2019, 28(23): 1540-1551. DOI: 10.1089/scd.2019.0132
[7] Rallapalli S, Guhathakurta S, Narayan S, et al. Generation of clinical-grade red blood cells from human umbilical cord blood mononuclear cells[J]. Cell Tissue Res, 2019, 375(2): 437-449. DOI: 10.1007/s00441-018-2919-6
[8] Liu S Q, Wu M Y, Lancelot M, et al. BMI1 enables extensive expansion of functional erythroblasts from human peripheral blood mononuclear cells[J]. Mol Ther, 2021, 29(5): 1918-1932. DOI: 10.1016/j.ymthe.2021.01.022
[9] Daniels D E, Ferguson D C J, Griffiths R E, et al. Reproducible immortalization of erythroblasts from multiple stem cell sources provides approach for sustainable RBC therapeutics[J]. Mol Ther Methods Clin Dev, 2021, 22: 26-39. DOI: 10.1016/j.omtm.2021.06.002
[10] Ackermann M, Liebhaber S, Klusmann J H, et al. Lost in translation: pluripotent stem cell-derived hematopoiesis[J]. EMBO Mol Med, 2015, 7(11): 1388-1402. DOI: 10.15252/emmm.201505301
[11] Di Buduo C A, Aguilar A, Soprano P M, et al. Latest culture techniques: cracking the secrets of bone marrow to mass-produce erythrocytes and platelets ex vivo[J]. Haematologica, 2021, 106(4): 947-957.
[12] Sun S M, Peng Y L, Liu J. Research advances in erythrocyte regeneration sources and methods in vitro[J]. Cell Regen, 2018, 7(2): 45-49. DOI: 10.1016/j.cr.2018.10.001
[13] Seo Y, Shin K H, Kim H H, et al. Current advances in red blood cell generation using stem cells from diverse sources[J]. Stem Cells Int, 2019, 2019: 9281329.
[14] Focosi D, Pistello M. Effect of induced pluripotent stem cell technology in blood banking[J]. Stem Cells Transl Med, 2016, 5(3): 269-274. DOI: 10.5966/sctm.2015-0257
[15] Hansen M, Von Lindern M, Van Den Akker E, et al. Human-induced pluripotent stem cell-derived blood products: state of the art and future directions[J]. FEBS Lett, 2019, 593(23): 3288-3303. DOI: 10.1002/1873-3468.13599
[16] Trakarnsanga K, Ferguson D, Daniels D E, et al. Vimentin expression is retained in erythroid cells differentiated from human iPSC and ESC and indicates dysregulation in these cells early in differentiation[J]. Stem Cell Res Ther, 2019, 10(1): 130. DOI: 10.1186/s13287-019-1231-z
[17] Zhang Y, Wang C, Wang L, et al. Large-scale ex vivo generation of human red blood cells from cord blood CD34+ cells[J]. Stem Cells Transl Med, 2017, 6(8): 1698-1709. DOI: 10.1002/sctm.17-0057
[18] Xie X Y, Yao H L, Han X Y, et al. Therapeutic use of red blood cells and platelets derived from human cord blood stem cells[J]. Stem Cells Transl Med, 2021, 10(Suppl 2): S48-S53.
[19] Heshusius S, Heideveld E, Burger P, et al. Large-scale in vitro production of red blood cells from human peripheral blood mononuclear cells[J]. Blood Adv, 2019, 3(21): 3337-3350. DOI: 10.1182/bloodadvances.2019000689
[20] Cervellera C F, Mazziotta C, Di Mauro G, et al. Immorta-lized erythroid cells as a novel frontier for in vitro blood production: current approaches and potential clinical application[J]. Stem Cell Res Ther, 2023, 14(1): 139. DOI: 10.1186/s13287-023-03367-8
[21] Kurita R, Suda N, Sudo K, et al. Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells[J]. PLoS One, 2013, 8(3): e59890. DOI: 10.1371/journal.pone.0059890
[22] Trakarnsanga K, Griffiths R E, Wilson M C, et al. An immortalized adult human erythroid line facilitates sustainable and scalable generation of functional red cells[J]. Nat Commun, 2017, 8: 14750. DOI: 10.1038/ncomms14750
[23] Daniels D E, Downes D J, Ferrer-Vicens I, et al. Comparing the two leading erythroid lines BEL-A and HUDEP-2[J]. Haematologica, 2020, 105(8): e389-e394. DOI: 10.3324/haematol.2019.229211
[24] Bagchi A, Nath A, Thamodaran V, et al. Direct generation of immortalized erythroid progenitor cell lines from peripheral blood mononuclear cells[J]. Cells, 2021, 10(3): 523. DOI: 10.3390/cells10030523
[25] Soboleva S, Kurita R, Kajitani N, et al. Establishment of an immortalized human erythroid cell line sustaining differentiation potential without inducible gene expression system[J]. Hum Cell, 2022, 35(1): 408-417. DOI: 10.1007/s13577-021-00652-7
[26] Mujahid A, Dickert F L. Blood group typing: from classical strategies to the application of synthetic antibodies generated by molecular imprinting[J]. Sensors (Basel), 2015, 16(1): 51. DOI: 10.3390/s16010051
[27] Kupzig S, Parsons S F, Curnow E, et al. Superior survival of ex vivo cultured human reticulocytes following transfusion into mice[J]. Haematologica, 2017, 102(3): 476-483. DOI: 10.3324/haematol.2016.154443
[28] Trakarnsanga K, Tipgomut C, Metheetrairut C, et al. Generation of an immortalised erythroid cell line from haematopoietic stem cells of a haemoglobin E/β-thalassemia patient[J]. Sci Rep, 2020, 10(1): 16798. DOI: 10.1038/s41598-020-73991-4
[29] Satchwell T J, Wright K E, Haydn-Smith K L, et al. Genetic manipulation of cell line derived reticulocytes enables dissection of host malaria invasion requirements[J]. Nat Commun, 2019, 10(1): 3806. DOI: 10.1038/s41467-019-11790-w
[30] Satchwell T J. Generation of red blood cells from stem cells: achievements, opportunities and perspectives for malaria research[J]. Front Cell Infect Microbiol, 2022, 12: 1039520. DOI: 10.3389/fcimb.2022.1039520
[31] Jiang Y, Yuan Y, Peng F, et al. Erythrocyte-based drug delivery: how far from clinical application?[J]. Curr Drug Deliv, 2024, 21(1): 52-64. DOI: 10.2174/1567201820666230320103529
[32] Zhang G S, Huang X F, Xiu H Q, et al. Extracellular vesicles: natural liver-accumulating drug delivery vehicles for the treatment of liver diseases[J]. J Extracell Vesicles, 2020, 10(2): e12030. DOI: 10.1002/jev2.12030
[33] Thangaraju K, Neerukonda S N, Katneni U, et al. Extracellular vesicles from red blood cells and their evolving roles in health, coagulopathy and therapy[J]. Int J Mol Sci, 2020, 22(1): 153. DOI: 10.3390/ijms22010153
[34] Izzati Mat Rani N N, Alzubaidi Z M, Azhari H, et al. Novel engineering: biomimicking erythrocyte as a revolutionary platform for drugs and vaccines delivery[J]. Eur J Pharmacol, 2021, 900: 174009. DOI: 10.1016/j.ejphar.2021.174009
[35] Li W S, Su Z G, Hao M X, et al. Cytopharmaceuticals: an emerging paradigm for drug delivery[J]. J Control Release, 2020, 328: 313-324. DOI: 10.1016/j.jconrel.2020.08.063
[36] Yang L, Huang S Q, Zhang Z R, et al. Roles and applications of red blood cell-derived extracellular vesicles in health and diseases[J]. Int J Mol Sci, 2022, 23(11): 5927. DOI: 10.3390/ijms23115927
[37] Kweon S, Kim S, Baek E J. Current status of red blood cell manufacturing in 3D culture and bioreactors[J]. Blood Res, 2023, 58(S1): S46-S51. DOI: 10.5045/br.2023.2023008
[38] Mei Y, Liu Y J, Ji P. Understanding terminal erythro-poiesis: an update on chromatin condensation, enucleation, and reticulocyte maturation[J]. Blood Rev, 2021, 46: 100740. DOI: 10.1016/j.blre.2020.100740
[39] Soboleva S, Miharada K. Induction of enucleation in primary and immortalized erythroid cells[J]. Int J Hematol, 2022, 116(2): 192-198. DOI: 10.1007/s12185-022-03386-w
[40] Zhang R R, Zhu X F. Relationship between macrophages and erythropoiesis[J]. Chin J Contemp Pediatr, 2016, 18(1): 94-99.
[41] Sivalingam J, SuE Y, Lim Z R, et al. A scalable suspension platform for generating high-density cultures of universal red blood cells from human induced pluripotent stem cells[J]. Stem Cell Reports, 2021, 16(1): 182-197. DOI: 10.1016/j.stemcr.2020.11.008
[42] Pellegrin S, Severn C E, Toye A M. Towards manufactured red blood cells for the treatment of inherited anemia[J]. Haematologica, 2021, 106(9): 2304-2311.
[43] Seghatchian J, Amiral J. Spotlight on the current perspectives on applications of human blood cell culture and organoids: Introductory remarks[J]. Transfus Apher Sci, 2020, 59(4): 102861.
[44] Gallego-Murillo J S, Iacono G, Van Der Wielen L A M, et al. Expansion and differentiation of ex vivo cultured erythroblasts in scalable stirred bioreactors[J]. Biotechnol Bioeng, 2022, 119(11): 3096-3116.
[45] Giarratana M C, Rouard H, Dumont A, et al. Proof of principle for transfusion of in vitro-generated red blood cells[J]. Blood, 2011, 118(19): 5071-5079.
[46] National Health Service. First ever clinical trial of laboratory grown red blood cells being transfused into another person[EB/OL]. (2022-11-07)[2023-06-18]. https://www.nhsbt.nhs.uk/news/first-ever-clinical-trial-of-labora-tory-grown-red-blood-cells-being-transfused-into-another-person/.
-
期刊类型引用(2)
1. 吴雪彬,翁桂珍. 老年肿瘤化疗患者生前预嘱知信行的风险因素研究. 中国卫生标准管理. 2025(02): 191-194 . 百度学术
2. 陈龙,任明辉. 生前预嘱制度的检视与完善. 协和医学杂志. 2025(02): 523-528 . 本站查看
其他类型引用(1)