
Low-energy elastic (anti)neutrino−nucleon scattering in covariant baryon chiral perturbation theory
Jin-Man Chen, Ze-Rui Liang, De-Liang Yao
Front. Phys. ›› 2024, Vol. 19 ›› Issue (6) : 64202.
Low-energy elastic (anti)neutrino−nucleon scattering in covariant baryon chiral perturbation theory
The low-energy antineutrino- and neutrino−nucleon neutral current elastic scattering is studied within the framework of the relativistic SU(2) baryon chiral perturbation theory up to the order of
chiral perturbation theory / neutrino−nucleon scattering / form factors / chiral Lagrangians / one-loop amplitude / neutral weak current
Tab.1 Isospin factors for physical processes. |
Physical process | | |
---|---|---|
| 1 | 1 |
| 1 | 1 |
| | 1 |
| | 1 |
Fig.4 Differential cross section |
Fig.8 Total cross sections at different chiral orders. Our ChPT prediction is expected to be reliable up to |
[1] |
K. Abe, Y. Hayato, T. Iida, M. Ikeda, C. Ishihara.
CrossRef
ADS
Google scholar
|
[2] |
A. Abusleme, T. Adam, S. Ahmad, R. Ahmed, S. Aiello.
CrossRef
ADS
Google scholar
|
[3] |
P. Adamson, C. Andreopoulos, R. Armstrong, D. J. Auty, D. S. Ayres.
CrossRef
ADS
Google scholar
|
[4] |
A. A. Aguilar-Arevalo, C. E. Anderson, A. O. Bazarko, S. J. Brice, B. C. Brown.
CrossRef
ADS
Google scholar
|
[5] |
A. A. Aguilar-Arevalo, B. C. Brown, L. Bugel, G. Cheng, E. D. Church.
CrossRef
ADS
Google scholar
|
[6] |
L. A. Ahrens, S. H. Aronson, P. L. Connolly, B. G. Gibbard, M. J. Murtagh.
CrossRef
ADS
Google scholar
|
[7] |
L. Alvarez-Ruso, M. Sajjad Athar, M. B. Barbaro, D. Cherdack, M. E. Christy.
CrossRef
ADS
Google scholar
|
[8] |
L.Alvarez-Ruso, Neutrinos and their interactions in the Standard Model, Acta Phys. Pol. B Proc. Suppl. 9(4 Supp.), 669 (2016)
|
[9] |
F. P. An, J. Z. Bai, A. B. Balantekin, H. R. Band, D. Beavis.
CrossRef
ADS
Google scholar
|
[10] |
C. Andreopoulos, A. Bell, D. Bhattacharya, F. Cavanna, J. Dobson, S. Dytman, H. Gallagher, P. Guzowski, R. Hatcher, P. Kehayias, A. Meregaglia, D. Naples, G. Pearce, A. Rubbia, M. Whalley, T. Yang. The GENIE neutrino monte carlo generator. Nucl. Instrum. Methods Phys. Res. A, 2010, 614(1): 87
CrossRef
ADS
Google scholar
|
[11] |
J.AshmanB. BadelekG.BaumJ.BeaufaysC.P. Bee,
|
[12] |
T. Bauer, J. C. Bernauer, S. Scherer. Electromagnetic form factors of the nucleon in effective field theory. Phys. Rev. C Nucl. Phys., 2012, 86(6): 065206
CrossRef
ADS
Google scholar
|
[13] |
J. F. Beacom, S. Chen, J. Cheng, S. N. Doustimotlagh, Y. Gao.
CrossRef
ADS
Google scholar
|
[14] |
O. Benhar, P. Huber, C. Mariani, D. Meloni. Neutrino–nucleus interactions and the determination of oscillation parameters. Phys. Rep., 2017, 700: 1
CrossRef
ADS
Google scholar
|
[15] |
V. Bernard, N. Kaiser, U. G. Meißner. Low-energy theorems for weak pion production. Phys. Lett. B, 1994, 331(1−2): 137
CrossRef
ADS
Google scholar
|
[16] |
V. Bernard, N. Kaiser, U. G. MEIßNER. Chiral dynamics in nucleons and nuclei. Int. J. Mod. Phys. E, 1995, 4(2): 193
CrossRef
ADS
Google scholar
|
[17] |
V. Bernard. Chiral perturbation theory and baryon properties. Prog. Part. Nucl. Phys., 2008, 60(1): 82
CrossRef
ADS
Google scholar
|
[18] |
V. Bernard, L. Elouadrhiri, U. G. Meißner. Axial structure of the nucleon. J. Phys. G, 2002, 28(1): R1
CrossRef
ADS
Google scholar
|
[19] |
C. A. Bertulani, A. Gade. Nuclear astrophysics with radioactive beams. Phys. Rep., 2010, 485(6): 195
CrossRef
ADS
Google scholar
|
[20] |
D. Casper. The Nuance neutrino physics simulation, and the future. Nucl. Phys. B Proc. Suppl., 2002, 112(1−3): 161
CrossRef
ADS
Google scholar
|
[21] |
Y. H. Chen, D. L. Yao, H. Q. Zheng. Analyses of pion-nucleon elastic scattering amplitudes up to O(p4) in extended-on-mass-shell subtraction scheme. Phys. Rev. D, 2013, 87(5): 054019
CrossRef
ADS
Google scholar
|
[22] |
A. Denner, S. Dittmaier. Reduction schemes for one-loop tensor integrals. Nucl. Phys. B, 2006, 734(1-2): 62
CrossRef
ADS
Google scholar
|
[23] |
N. Fettes, U. G. Meißner, M. Mojžiš, S. Steininger. The chiral effective pion nucleon Lagrangian of order p**4. Ann. Phys., 2000, 283(2): 273
CrossRef
ADS
Google scholar
|
[24] |
J. A. Formaggio, G. P. Zeller. From eV to EeV: Neutrino cross sections across energy scales. Rev. Mod. Phys., 2012, 84(3): 1307
CrossRef
ADS
Google scholar
|
[25] |
T. Fuchs, J. Gegelia, G. Japaridze, S. Scherer. Renormalization of relativistic baryon chiral perturbation theory and power counting. Phys. Rev. D, 2003, 68(5): 056005
CrossRef
ADS
Google scholar
|
[26] |
T. Fuchs, J. Gegelia, S. Scherer. Electromagnetic form factors of the nucleon in chiral perturbation theory. J. Phys. G, 2004, 30(10): 1407
CrossRef
ADS
Google scholar
|
[27] |
G. T. Garvey, W. C. Louis, D. H. White. Determination of proton strange form-factors from neutrino p elastic scattering. Phys. Rev. C, 1993, 48(2): 761
CrossRef
ADS
Google scholar
|
[28] |
J. Gasser, H. Leutwyler. Chiral perturbation theory to one loop. Ann. Phys., 1984, 158(1): 142
CrossRef
ADS
Google scholar
|
[29] |
J. Gasser, H. Leutwyler. Chiral perturbation theory: Expansions in the mass of the strange quark. Nucl. Phys. B, 1985, 250(1-4): 465
CrossRef
ADS
Google scholar
|
[30] |
J. Gasser, M. E. Sainio, A. Svarc. Nucleons with chiral loops. Nucl. Phys. B, 1988, 307(4): 779
CrossRef
ADS
Google scholar
|
[31] |
L. Geng. Recent developments in SU(3) covariant baryon chiral perturbation theory. Front. Phys. (Beijing), 2013, 8(3): 328
CrossRef
ADS
Google scholar
|
[32] |
T.GolanJ. T. SobczykJ.Zmuda, NuWro: the Wroclaw Monte Carlo generator of neutrino interactions, Nucl. Phys. B Proc. Suppl. 229–232, 499 (2012)
|
[33] |
L. N. Hand, D. G. Miller, R. Wilson. Electric and magnetic form factors of the nucleon. Rev. Mod. Phys., 1963, 35(2): 335
CrossRef
ADS
Google scholar
|
[34] |
J. Horstkotte, A. Entenberg, R. S. Galik, A. K. Mann, H. H. Williams, W. Kozanecki, C. Rubbia, J. Strait, L. Sulak, P. Wanderer. Measurement of neutrino−proton and anti-neutrinos−proton elastic scattering. Phys. Rev. D, 1982, 25(11): 2743
CrossRef
ADS
Google scholar
|
[35] |
H. T. Janka. Explosion mechanisms of core-collapse supernovae. Annu. Rev. Nucl. Part. Sci., 2012, 62(1): 407
CrossRef
ADS
Google scholar
|
[36] |
C. Juszczak, J. A. Nowak, J. T. Sobczyk. Simulations from a new neutrino event generator. Nucl. Phys. B Proc. Suppl., 2006, 159: 211
CrossRef
ADS
Google scholar
|
[37] |
C.L. KorpaM. F. M. LutzX.Y. GuoY.Heo. Coupled-channel system with anomalous thresholds and unitarity, Phys. Rev. D 107(3), L031505 (2023)
|
[38] |
J. Liang, Y. B. Yang, T. Draper, M. Gong, K. F. Liu. Quark spins and anomalous ward identity. Phys. Rev. D, 2018, 98(7): 074505
CrossRef
ADS
Google scholar
|
[39] |
Z. R. Liang, P. C. Qiu, D. L. Yao. One-loop analysis of the interactions between doubly charmed baryons and Nambu−Goldstone bosons. J. High Energy Phys., 2023, 07(7): 124
CrossRef
ADS
Google scholar
|
[40] |
C. H. Llewellyn Smith. Neutrino reactions at accelerator energies. Phys. Rep., 1972, 3(5): 261
CrossRef
ADS
Google scholar
|
[41] |
G. Passarino, M. J. G. Veltman. One loop corrections for e+e− annihilation into μ+μ− in the Weinberg Model. Nucl. Phys. B, 1979, 160(1): 151
CrossRef
ADS
Google scholar
|
[42] |
S.F. PateV. PapavassiliouJ.P. SchaubD.P. TrujilloM.V. IvanovM.B. BarbaroC.Giusti, Global fit of electron and neutrino elastic scattering data to determine the strange quark contribution to the vector and axial form factors of the nucleon, arXiv: 2402.10854 [hep-ph] (2024)
|
[43] |
C. Patrignani.
CrossRef
ADS
Google scholar
|
[44] |
D.Perevalov, Neutrino−nucleus neutral current elastic interactions measurement in Mini-BooNE, PhD thesis, Alabama University, 2009
|
[45] |
L. Ren. Studies of neutral current neutrino-nucleon scattering with the MicroBooNE Detector. JPS Conf. Proc., 2022, 37: 020309
CrossRef
ADS
Google scholar
|
[46] |
M. S. Athar, S. W. Barwick, T. Brunner, J. Cao, M. Danilov.
CrossRef
ADS
Google scholar
|
[47] |
S. Scherer. Introduction to chiral perturbation theory. Adv. Nucl. Phys., 2003, 27: 277
CrossRef
ADS
Google scholar
|
[48] |
M. R. Schindler, T. Fuchs, J. Gegelia, S. Scherer. Axial, induced pseudoscalar, and pion−nucleon form-factors in manifestly Lorentz-invariant chiral perturbation theory. Phys. Rev. C, 2007, 75(2): 025202
CrossRef
ADS
Google scholar
|
[49] |
R. A. Smith, E. J. Moniz. Neutrino reactions on nuclear targets. Nucl. Phys. B, 1972, 43: 605
CrossRef
ADS
Google scholar
|
[50] |
R. S. Sufian, K. F. Liu, D. G. Richards. Weak neutral current axial form factor using (ν)ν−nucleon scattering and lattice QCD inputs. J. High Energy Phys., 2020, 2020(1): 136
CrossRef
ADS
Google scholar
|
[51] |
S. Weinberg. Phenomenological Lagrangians. Physica A, 1979, 96(1−2): 327
CrossRef
ADS
Google scholar
|
[52] |
R. L. Workman.
CrossRef
ADS
Google scholar
|
[53] |
D. L. Yao, L. Alvarez-Ruso, M. J. Vicente-Vacas. Extraction of nucleon axial charge and radius from lattice QCD results using baryon chiral perturbation theory. Phys. Rev. D, 2017, 96(11): 116022
CrossRef
ADS
Google scholar
|
[54] |
D. L. Yao, L. Alvarez-Ruso, A. N. H. Blin, M. J. V. Vacas. Weak pion production off the nucleon in covariant chiral perturbation theory. Phys. Rev. D, 2018, 98(7): 076004
CrossRef
ADS
Google scholar
|
[55] |
D. L. Yao, L. Alvarez-Ruso, M. J. Vicente Vacas. Neutral-current weak pion production off the nucleon in covariant chiral perturbation theory. Phys. Lett. B, 2019, 794: 109
CrossRef
ADS
Google scholar
|
[56] |
D.L. YaoL. Y. DaiH.Q. ZhengZ.Y. Zhou, A review on partial-wave dynamics with chiral effective field theory and dispersion relation, Rep. Prog. Phys. 84(7), 076201 (2021)
|
/
〈 |
|
〉 |