PDF (4.3 MB)
Collect
Submit Manuscript
Research Article | Open Access

Highly divergent sympatric lineages of Leptotila verreauxi (Aves: Columbidae) suggest a secondary contact area in the Isthmus of Tehuantepec, Mexico

Orlando J. Espinosa-Cháveza,bAdolfo G. Navarro-SigüenzaaHernando Rodríguez-CorreacLuis A. Sánchez-Gonzáleza()
Museo de Zoología “Alfonso L. Herrera”, Depto. de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70-399, CP 04510, Ciudad de México, Mexico
Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Universidad Nacional Autónoma de México, Coyoacán, CP 04510, CDMX, Mexico
Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México. Antigua Carretera a Pátzcuaro No. 8701 Col. Ex Hacienda de San José de la Huerta, C.P. 58190, Morelia, Michoacán, Mexico
Show Author Information

Abstract

Due to a complex geological and biotic history, the Isthmus of Tehuantepec (IT), has been long recognized as a driver for the evolutionary divergence of numerous lowland and highland taxa. Widely distributed in the lowlands of the American continent, the White-Tipped Dove (Leptotila verreauxi) is a polytypic species with 13 recognized subspecies. Four of these have been recorded in Mexico, and the distribution of three abuts at the IT, suggesting a contact zone. To estimate phylogenetic patterns, divergence times and genetic differentiation, we examined two mtDNA (ND2 and COI) and one nDNA (β-fibint 7) markers. We also used correlative ecological niche models (ENM) to assess whether ecological differences across the IT may have acted as a biogeographical boundary. We estimated paleodistributions during the Middle Holocene, Last Glacial Maximum and Last Interglacial, to evaluate the influence of climate changes on the distribution and demographic changes. Our results showed genetically distinct lineages that diverged approximately 2.5 million years ago. Climatic and ecological factors may have played a dual role in promoting differentiation, but also in the formation of a secondary contact zone in the southern IT. Our ecological niche comparisons indicated that the ecological niche of sympatric lineages at the IT are not identical, suggesting niches divergence; in addition, environmental niche models across the region indicated no abrupt biogeographic barriers, but the presence of regions with low suitability. These results suggest that genetic differentiation originated by a vicariant event probably related to environmental factors, favored the evolution of different ecological niches. Also, the absence of a biogeographic barrier but the presence of less suitable areas in the contact regions, suggest that secondary contact zones may be also maintained by climatic factors for the eastern group, but also by biotic interactions for the western group.

References

 

Aiello-Lammens, M.E., Boria, R.A., Radosavljevic, A., Vilela, B., Anderson, R.P., 2015. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541-545. https://doi.org/10.1111/ecog.01132.

 

Anderson, R.P., Peterson, A.T., Gómez-Laverde, M., 2002. Using niche-based GIS modeling to test geographic predictions of competitive exclusion and competitive release in South American pocket mice. Oikos 98, 3–16.

 

Arcangeli, J., Light, J.E., Cervantes, F.A., 2018. Molecular and morphological evidence of the diversification in the gray mouse opossum, Tlacuatzin canescens (Didelphimorphia), with description of a new species. J. Mammal. 99, 138-158. https://doi.org/10.1093/jmammal/gyx173.

 

Baehr, J., Fröhlich, K., Botzet, M., Domeisen, D.I.V., Kornblueh, L., Notz, D., et al., 2015. The prediction of surface temperature in the new seasonal prediction system based on the MPI-ESM coupled climate model. Clim. Dyn. 44, 2723-2735. https://doi.org/10.1007/s00382-014-2399–7.

 

Bandelt, H-J., Forster, P., Rohl, A., 1999. Median-joining networks for inferring intraspecic phylogenies. Mol. Biol. 16, 37-48. https://doi.org/10.1093/oxfordjournals.molbev.a026036.

 

Barber, B.R., Klicka, J., 2010. Two pulses of diversification across the Isthmus of Tehuantepec in a montane Mexican bird fauna. Proc. R. Soc. A B 277, 2675-2681. https://doi.org/10.1098/rspb.2010.0343.

 

Barrier, E., Velasquillo, L., Chavez, M., Gaulon, R., 1998. Neotectonic evolution of the Isthmus of Tehuantepec (southeastern Mexico). Tectonophysics 287, 77-96. https://doi.org/10.1016/S0040-1951(98)80062–0.

 

Benham, P.M., Cheviron, Z.A., 2019. Divergent mitochondrial lineages arose within a large, panmictic population of the Savannah sparrow (Passerculus sandwichensis). Mol. Ecol. 28, 1765-1783. https://doi.org/10.1111/mec.15049.

 

Benson, D.A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., et al., 2013. GenBank. Nucleic Acids Res. 41, D36-42. https://doi.org/10.1093/nar/gks1195.

 
Binford, L.C., 1989. A distributional survey of the birds of the Mexican state of Oaxaca. American Ornithologists’ Union.
 

Bradley, R.D., Henson, D.D., Durish, N.D., 2008. Re-evaluation of the geographic distribution and phylogeography of the Sigmodon hispidus complex based on mitochondrial DNA sequences. Southwestern Nat. 53, 301.

 

Butler, B.O., Smith, L.L., Flores-Villela, O., 2023. Phylogeography and taxonomy of Coleonyx elegans Gray 1845 (Squamata: Eublepharidae) in Mesoamerica: The Isthmus of Tehuantepec as an environmental barrier. Mol. Phylogenet. Evol. 178, 107632. https://doi.org/10.1016/j.ympev.2022.107632.

 

Castillo-Chora, V.D.J., Sánchez-González, L.A., Mastretta-Yanes, A., Prieto-Torres, D.A., Navarro-Sigüenza, A.G., 2021. Insights into the importance of areas of climatic stability in the evolution and maintenance of avian diversity in the Mesoamerican dry forests. Biol. J. Linn. Soc. 132, 741-758. https://doi.org/10.1093/biolinnean/blaa202.

 

Cobos, M.E., Townsend Peterson, A., Barve, N., Osorio-Olvera, L., 2019. Kuenm: An R package for detailed development of ecological niche models using Maxent. PeerJ 7, e6281. https://doi.org/10.7717/peerj.6281.

 

Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N.D., Wikramanayake, E., et al., 2017. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534-545. https://doi.org/10.1093/biosci/bix014.

 
Drummond, A.J., Rambaut, A., 2015. Bayesian evolutionary analysis by sampling trees.In: Bayesian Evolutionary Analysis with BEAST, pp. 79–96.
 

Edwards, E.P., Lea, R.B., 1955. Birds of the Monserrate area, Chiapas, Mexico. Condor 57, 31-54. https://doi.org/10.2307/1364696.

 

Excoffier, L., Laval, G., Schneider, S., 2005. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Bioinforma. 1, 47-50. https://doi.org/10.1177/117693430500100003.

 
Ferrusquia-Villafranca, I., 1993. Geology of Mexico: a synopsis. Biological Diversity of Mexico: Origins and Distribution.
 
Friedmann, H., Griscom, L., Moore, R.T., 1950. Distributional Check-List of the Birds of Mexico, Part I. Pacific Coast Avifauna Number 29. Cooper Ornithological Club, Berkeley.
 

Fuchs, J., Bowie, R.C.K., Melo, M., Boano, G., Pavia, M., Fjeldsa, J., 2021. Phylogeographical history of the Olive Woodpecker Dendropicos griseocephalus, a species widely distributed across Africa. Ibis 163, 417-428. https://doi.org/10.1111/ibi.12875.

 

García-Moreno, J., Navarro-Sigüenza, A.G., Peterson, A.T., Sánchez-González, L.A., 2004. Genetic variation coincides with geographic structure in the common bush-tanager (Chlorospingus ophthalmicus) complex from Mexico. Mol. Phylogenet. Evol. 33, 186-196. https://doi.org/10.1016/j.ympev.2004.05.007.

 

Gent, P.R., Danabasoglu, G., Donner, L.J., Holland, M.M., Hunke, E.C., Jayne, S.R., et al., 2011. The community climate system model version 4. J. Clim. 24, 4973-4991. https://doi.org/10.1175/2011JCLI4083.1.

 
Gill, F., Donsker, D., Rasmussen, P., 2021. IOC World Bird List, 13.1. https://doi.org/10.14344/IOC.ML.13.1.
 

Glor, R.E., Warren, D., 2011. Testing ecological explanations for biogeographic boundaries. Evolution 65, 673-683. https://doi.org/10.1111/j.1558-5646.2010.01177.x.

 

Gray, L.N., Barley, A.J., Poe, S., Thomson, R.C., Nieto-Montes de Oca, A., Wang, I.J., 2019. Phylogeography of a widespread lizard complex reflects patterns of both geographic and ecological isolation. Mol. Ecol. 28, 644-657. https://doi.org/10.1111/mec.14970.

 

Hafner, M.S., Sudman, P.D., Villablanca, F.X., Spradling, T.A., Demastes, J.W., Nadler, S.A., 1994. Disparate rates of molecular evolution in cospeciating hosts and parasites. Science 265, 1087-1090. https://doi.org/10.1126/science.8066445.

 
Hartl, D.L., Clark, A.G., 1997. Principles of population genetics. Sinauer associates Sunderland.
 

Hasumi, H., Emori, S., 2004. K-1 Coupled GCM (MIROC) Description. K-1 Tech. Rep. 1 34.

 

Hebert, P.D.N., Stoeckle, M.Y., Zemlak, T.S., Francis, C.M., 2004. Identification of birds through DNA barcodes. PLoS Biol. 2, e312. https://doi.org/10.1371/journal.pbio.0020312.

 

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high-resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965-1978. https://doi.org/10.1002/joc.1276.

 
Hogan, K.M., 1999. White-tipped dove (Leptotila verreauxi). In: Poole, A., Gill, F. (Eds.), The Birds of North America, No. 436. The Birds of North America, Inc., Philadelphia, P A.
 

Hogner, S., Laskemoen, T., Lifjeld, J.T., Porkert, J., Kleven, O., Albayrak, T., et al., 2012. Deep sympatric mitochondrial divergence without reproductive isolation in the common redstart Phoenicurus phoenicurus. Ecol. Evol. 2, 2974-2988. https://doi.org/10.1002/ece3.398.

 

Howell, S.N.G., Webb, S., 1995. A Guide to the Birds of Mexico and Northern Central America. Oxford University Press, Oxford.

 

Huelsenbeck, J.P., Ronquist, F., 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754-755. https://doi.org/10.1093/bioinformatics/17.8.754.

 

Johnson, K.P., Clayton, D.H., 2000. Nuclear and mitochondrial genes contain similar phylogenetic signal for pigeons and doves (Aves: Columbiformes). Mol. Phylogenet. Evol. 14, 141-151. https://doi.org/10.1006/mpev.1999.0682.

 

Johnson, K.P., Weckstein, J.D., 2011. The Central American land bridge as an engine of diversification in New World doves. J. Biogeogr. 38, 1069-1076. https://doi.org/10.1111/j.1365-2699.2011.02501.x.

 

Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772-780. https://doi.org/10.1093/molbev/mst010.

 

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., et al., 2012. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647-1649. https://doi.org/10.1093/bioinformatics/bts199.

 

Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T., Calcott, B., 2017. Partitionfinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772-773. https://doi.org/10.1093/molbev/msw260.

 

Llanes-Quevedo, A., Mastretta-Yanes, A., Sánchez-González, L.A., Castillo-Chora, V.J., Navarro-Sigüenza, A.G., 2022. The tangled evolutionary history of a long-debated Mesoamerican taxon: The Velazquez Woodpecker (Melanerpes santacruzi, Aves: Picidae). Mol. Phylogenet. Evol. 170, 107445. https://doi.org/10.1016/j.ympev.2022.107445.

 

Lorenz, T.C., 2012. Polymerase chain reaction: Basic protocol plus troubleshooting and optimization strategies. J. Vis. Exp. 63, e3998. https://doi.org/10.3791/3998.

 

Machado-Stredel, F., Cobos, M.E., Peterson, A.T., 2021. A simulation-based method for selecting calibration areas for ecological niche models and species distribution models. Front. Biogeogr. 13, e48814. https://doi.org/10.21425/f5fbg48814.

 

McCloy, C., Ingle, J.C., Barron, J.A., 1988. Neogene stratigraphy, foraminifera, diatoms, and depositional history of Maria Madre Island, Mexico: Evidence of early Neogene marine conditions in the southern Gulf of California. Mar. Micropaleontol. 13, 193-212. https://doi.org/10.1016/0377-8398(88)90003–5.

 

Morrone, J.J., 2010. Fundamental biogeographic patterns across the Mexican Transition Zone: an evolutionary approach. Ecography 33, 355-361. https://doi.org/10.1111/j.1600-0587.2010.06266.x.

 

Morrone, J.J., 2014. Biogeographical regionalisation of the Neotropical region. Zootaxa 3782, 1-110. https://doi.org/10.11646/zootaxa.3782.1.1.

 

Mulcahy, D.G., Morrill, B.H., Mendelson III, J.R., 2006. Historical biogeography of lowland species of toads (Bufo) across the Trans-Mexican Neovolcanic Belt and the Isthmus of Tehuantepec. J. Biogeogr. 33, 1889–1904.

 

Navarro-Sigüenza, A.G., Townsend Peterson, A., Nyari, A., García-Deras, G.M., García-Moreno, J., 2008. Phylogeography of the Buarremon brush-finch complex (Aves, Emberizidae) in Mesoamerica. Mol. Phylogenet. Evol. 47, 21-35. https://doi.org/10.1016/j.ympev.2007.11.030.

 

Navarro-Sigüenza, A.G., Rebon-Gallardo, M.F., Gordillo-Martinez, A., Peterson, A.T., Berlanga-García, H., Sánchez-González, L.A., 2014. Biodiversidad de aves en Mexico. Rev. Mex. Biodivers. 85, 476-495. https://doi.org/10.7550/rmb.41882.

 

Nei, M., 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.

 

Omland, K.E., Baker, J.M., Peters, J.L., 2006. Genetic signatures of intermediate divergence: population history of Old and New World Holarctic ravens (Corvus corax). Mol. Ecol. 15, 795-808. https://doi.org/10.1111/j.1365-294X.2005.02827.x.

 

Ornelas, J.F., Sosa, V., Soltis, D.E., Daza, J.M., González, C., Soltis, P.S., et al., 2013. Comparative phylogeographic analyses illustrate the complex evolutionary history of threatened cloud forests of northern Mesoamerica. PLoS One 8, 56283. https://doi.org/10.1371/journal.pone.0056283.

 

Ortiz-Ramírez, M.F., Andersen, M.J., Zaldívar-Riverón, A., Ornelas, J.F., Navarro-Sigüenza, A.G., 2016. Geographic isolation drives divergence of uncorrelated genetic and song variation in the Ruddy-capped Nightingale-Thrush (Catharus frantzii; Aves: Turdidae). Mol. Phylogenet. Evol. 94, 74-86. https://doi.org/10.1016/j.ympev.2015.08.017.

 

Ortiz-Ramírez, M.F., Sánchez-González, L.A., Castellanos-Morales, G., Ornelas, J.F., Navarro-Sigüenza, A.G., 2018. Concerted Pleistocene dispersal and genetic differentiation in passerine birds from the Tres Marias Archipelago, Mexico. Auk 135, 716-732. https://doi.org/10.1642/auk-17-190.1.

 

Osorio-Olvera, L., Lira-Noriega, A., Soberón, J., Peterson, A.T., Falconi, M., Contreras-Díaz, R.G., et al., 2020. ntbox: An r package with graphical user interface for modelling and evaluating multidimensional ecological niches. Methods Ecol. Evol. 11, 1199-1206. https://doi.org/10.1111/2041-210X.13452.

 

Pereira, S.L., Johnson, K.P., Clayton, D.H., Baker, A.J., 2007. Mitochondrial and nuclear DNA sequences support a Cretaceous origin of Columbiformes and a dispersal-driven radiation in the Paleogene. Syst. Biol. 56, 656-672. https://doi.org/10.1080/10635150701549672.

 

Peterson, A.T., Soberón, J., Sánchez-Cordero, V., 1999. Conservatism of ecological niches in evolutionary time. Science 285, 1265-1267. https://doi.org/10.1126/science.285.5431.1265.

 

Phillips, S.J., Anderson, R.P., Dudik, M., Schapire, R.E., Blair, M.E., 2017. Opening the black box: an open-source release of Maxent. Ecography 40, 887-893. https://doi.org/10.1111/ecog.03049.

 

Pons, J-M., Masson, C., Olioso, G., Fuchs, J., 2019. Gene flow and genetic admixture across a secondary contact zone between two divergent lineages of the Eurasian Green Woodpecker Picus viridis. J. Ornithol. 160, 935-945. https://doi.org/10.1007/s10336-019-01675–6.

 

Prychitko, T.M., Moore, W.S., 1997. The utility of DNA sequences of an intron from the β-Fibrinogen gene in phylogenetic analysis of woodpeckers (Aves: Picidae). Mol. Phylogenet. Evol. 8, 193-204. https://doi.org/10.1006/mpev.1997.0420.

 

Pybus, O.G., 2006. Model selection and the molecular clock. PLoS Biol. 4, 686-688. https://doi.org/10.1371/journal.pbio.0040151.

 
QGIS Development Team, 2022. QGIS Geographic Information System.
 
Rambaut, A., 2009. FigTree v1.4.3. http://tree.bio.ed.ac.uk/software/figtree/, 4.22.23.
 

Rambaut, A., Drummond, A.J., Xie, D., Baele, G., Suchard, M.A., 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901-904. https://doi.org/10.1093/sysbio/syy032.

 

Ramírez-Díaz, C.J., Ramírez-Morillo, I.M., Cortés-Flores, J., de-Nova, J.A., Duno de Stefano, R., Fernández-Concha, G.C., 2023. Biogeographical History of the Yucatan Peninsula Endemic Flora (Spermatophyta) from a Phylogenetic Perspective. Harvard Pap. Bot. 28, 99-120, https://doi.org/10.3100/hpib.v28iss1.2023.n13.

 

Ramos-Onsins, S.E., Rozas, J., 2002. Statistical properties of new neutrality tests against population growth. Mol. Biol. Evol. 19, 2092-2100. https://doi.org/10.1093/oxfordjournals.molbev.a004034.

 

Rodríguez-Correa, H., González-Rodríguez, A., Oyama, K., 2017. Perspectivas de la ecologia molecular en un pais megadiverso. Rev. Mex. Biodivers. 88, 3-13. https://doi.org/10.1016/j.rmb.2017.10.002.

 

Ronquist, F., Huelsenbeck, J.P., 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572-1574. https://doi.org/10.1093/bioinformatics/btg180.

 

Rozas, J., Ferrer-Mata, A., Sánchez-Del Barrio, J.C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S.E., et al., 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299-3302. https://doi.org/10.1093/molbev/msx248.

 
Sambrook, J., Russell, D.W., 2006. Purification of Nucleic Acids by Extraction with Phenol: chloroform. CSH Protoc. https://doi.org/10.1101/pdb.prot4455, 2006, pdb.prot4455.
 

Sánchez-González, L.A., Castillo-Chora, V.J., Arbeláez-Cortés, E., Navarro-Sigüenza, A.G., 2021. Diversification and secondary contact in the magpie-jays (Calocitta) throughout the pacific lowlands of Mesoamerica. J. Zool. Syst. Evol. Res. 59, 2371-2386. https://doi.org/10.1111/jzs.12571.

 

Sánchez-González, L.A., Cayetano, H., Prieto-Torres, D.A., Rojas-Soto, O.R., Navarro-Sigüenza, A.G., 2023. The role of ecological and geographical drivers of lineage diversification in the Squirrel cuckoo Piaya cayana in Mexico: a mitochondrial DNA perspective. J. Ornithol. 164, 37-53. https://doi.org/10.1007/S10336-022-02008-W.

 

Sangster, G., Sweet, A.D., Johnson, K.P., 2018. Paraclaravis, a new genus for the Purple-winged and Maroon-chested Ground-doves (Aves: Columbidae). Zootaxa 4461, 134. https://doi.org/10.11646/zootaxa.4461.1.10.

 

Seutin, G., Ratcliffe, L.M., Boag, P.T., 1995. Mitochondrial DNA homogeneity in the phenotypically diverse redpoll finch complex (Aves: Carduelinae: Carduelis flammea-hornemanni). Evolution 49, 962-973. https://doi.org/10.2307/2410418.

 

Shackleton, N.J., 2000. The 100,000-year Ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science 289, 1897–1902.

 

Silvestro, D., Michalak, I., 2012. RaxmlGUI: A graphical front-end for RAxML. Org. Divers. Evol. 12, 335-337. https://doi.org/10.1007/s13127-011-0056–0.

 

Smith, A.B., Godsoe, W., Rodríguez-Sánchez, F., Wang, H.H., Warren, D., 2019. Niche estimation above and below the species level. Trends Ecol. Evol. 34, 260-273. https://doi.org/10.1016/j.tree.2018.10.012.

 

Sorenson, M.D., Ast, J.C., Dimcheff, D.E., Yuri, T., Mindell, D.P., 1999. Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Mol. Phylogenet. Evol. 12, 105-114. https://doi.org/10.1006/mpev.1998.0602.

 

Sosa-López, J.R., González, C., Navarro-Sigüenza, A.G., 2013. Vocal geographic variation in Mesoamerican Common Bush Tanagers (Chlorospingus ophthalmicus). Wilson J. Ornithol. 125, 24-33. https://doi.org/10.1676/12-051.1.

 

Stamatakis, A., Hoover, P., Rougemont, J., 2008. A rapid bootstrap algorithm for the RAxML Web Servers. Syst. Biol. 57, 758-771. https://doi.org/10.1080/10635150802429642.

 

Steel, M., McKenzie, A., 2001. Properties of phylogenetic trees generated by Yule-type speciation models. Math. Biosci. 170, 91-112. https://doi.org/10.1016/S0025-5564(00)00061–4.

 

Stull, G.W., 2023. Evolutionary origins of the eastern North American-Mesoamerican floristic disjunction: Current status and future prospects. Am. J. Bot. 110, e16142. https://doi.org/10.1002/ajb2.16142.

 

Suchard, M.A., Lemey, P., Baele, G., Ayres, D.L., Drummond, A.J., Rambaut, A., 2018. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4. https://doi.org/10.1093/ve/vey016.

 

Sweet, A.D., Johnson, K.P., 2015. Patterns of diversification in small New World ground doves are consistent with major geologic events. Auk 132, 300-312. https://doi.org/10.1642/auk-14-193.1.

 

Sweet, A.D., Maddox, J.D., Johnson, K.P., 2017. A complete molecular phylogeny of Claravis confirms its paraphyly within small New World ground-doves (Aves: Peristerinae) and implies multiple plumage state transitions. J. Avian Biol. 48, 459-464. https://doi.org/10.1111/jav.01077.

 

Tominaga, K., Watanabe, K., Kakioka, R., Mori, S., Jeon, S.R., 2009. Two highly divergent mitochondrial DNA lineages within Pseudogobio esocinus populations in central Honshu, Japan. Ichthyol. Res. 56, 195-199. https://doi.org/10.1007/s10228-008-0071–0.

 

Tsai, W.L.E., Mota-Vargas, C., Rojas-Soto, O., Bhowmik, R., Liang, E.Y., Maley, J.M., et al., 2019. Museum genomics reveals the speciation history of Dendrortyx wood-partridges in the Mesoamerican highlands. Mol. Phylogenet. Evol. 136, 29-34. https://doi.org/10.1016/j.ympev.2019.03.017.

 

Vázquez-Miranda, H., Navarro-Sigüenza, A.G., Omland, K.E., 2009. Phylogeography of the Rufous-naped Wren (Campylorhynchus rufinucha): speciation and hybridization in Mesoamerica. Auk 126, 765-778. https://doi.org/10.1525/auk.2009.07048.

 

Warren, D.L., Matzke, N.J., Cardillo, M., Baumgartner, J.B., Beaumont, L.J., Turelli, M., et al., 2021. ENMTools 1.0: an R package for comparative ecological biogeography. Ecography 44, 504-511. https://doi.org/10.1111/ecog.05485.

 
Wei, T., Simko, V., 2021. R Package “Corrplot”: Visualization of a Correlation Matrix.
 

Whitmore, F.C., Stewart, R.H., 1965. Miocene mammals and Central American seaways. Science 148, 180-185. https://doi.org/10.1126/science.148.3667.180.

 

Wogau, K.H., Arz, H.W., Bohnel, H.N., Nowaczyk, N.R., Park, J., 2019. High resolution paleoclimate and paleoenvironmental reconstruction in the northern Mesoamerican frontier for prehistory to historical times. Quat. Sci. Rev. 226, 106001. https://doi.org/10.1016/j.quascirev.2019.106001.

 

Wyatt Durham, J., Arellano, A.R.V., Peck JR. J.H., 1955. Evidence for no Cenozoic Isthmus of Tehuantepec seaways. GSA Bull. 66, 977-992. https://doi.org/10.1130/0016-7606(1955)66[977:EFNCIO]2.0.CO;2.

 

Xiao, J.H., Wang, N.X., Murphy, R.W., Cook, J., Jia, L.Y., Huang, D.W., 2012. Wolbachia infection and dramatic intraspecific mitochondrial DNA divergence in a fig wasp. Evolution 66, 1907-1916. https://doi.org/10.1111/j.1558-5646.2011.01561.x.

 

Zarza, E., Reynoso, V.H., Emerson, B.C., 2008. Diversification in the northern neotropics: mitochondrial and nuclear DNA phylogeography of the iguana Ctenosaura pectinata and related species. Mol. Ecol. 17, 3259-3275. https://doi.org/10.1111/j.1365-294X.2008.03826.x.

Avian Research
Article number: 100160
Cite this article:
Espinosa-Chávez OJ, Navarro-Sigüenza AG, Rodríguez-Correa H, et al. Highly divergent sympatric lineages of Leptotila verreauxi (Aves: Columbidae) suggest a secondary contact area in the Isthmus of Tehuantepec, Mexico. Avian Research, 2024, 15(1): 100160. https://doi.org/10.1016/j.avrs.2024.100160
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return