Skip to main content
Log in

Comparative transcriptomes reveal the disjunction adaptive strategy of Thuja species in East Asia and North America

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

The genus Thuja is ideal for investigating the genetic basis of the East Asia–North America disjunction. The biogeographical background of the genus is debatable and an adaptive strategy is lacking. Through the analysis and mining of comparative transcriptomes, species differentiation and positively selected genes (PSGs) were identified to provide information for understanding the environmental adaptation strategies of the genus Thuja. De novo assembly yielded 44,397–74,252 unigenes of the five Thuja species with contig N50 length ranging from 1,559 to 1,724 bp. Annotations revealed a similar distribution of functional categories among them. Based on the phylogenetic trees constructed using the transcriptome data, T. sutchuenensis was divided first, followed by T. plicata and T. occidentalis. The final differentiation of T. koraiensis and T. standishii formed a clade. Enrichment analysis indicated that the PSGs of the North American Thuja species were involved in plant hormone signal transduction and carbon fixation of photosynthetic organisms pathways. The PSGs of East Asian Thuja were related to phenolic, alkaloid, and terpenoid synthesis, important stress-resistant genes and could increase plant resistance to external environmental stresses. This study discovered numerous aroma synthetic-related PSGs including terpene synthase (TPS) genes and lipid phosphate phosphatase 2 (LPP2), associated with the synthetic aroma of T. sutchuenensis. Physiological indicators, such as the contents of soluble sugars, total chlorophyll, total phenolics, and total flavonoids were determined, which are consistent with the PSGs enrichment pathways associated with adaptive strategies in the five Thuja species. The results of this study provide an important basis for future studies on conservation genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfeng Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: This work was supported by the National Natural Science Foundation of China (31870664), the 948 Program of National Forestry and Grassland Administration (2013-4-47), and the National Key Research and Development Program of China (2022YFD2200103).

The online version is available at http://www.springerlink.com.

Corresponding editor: Yanbo Hu.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3464 kb)

Supplementary file2 (XLSX 308 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, E., Liu, X., Chen, J. et al. Comparative transcriptomes reveal the disjunction adaptive strategy of Thuja species in East Asia and North America. J. For. Res. 34, 1963–1974 (2023). https://doi.org/10.1007/s11676-023-01648-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-023-01648-9

Keywords

Profiles

  1. Xue Liu