Loading [MathJax]/extensions/MathMenu.js
CHEN S, WANG N, CHEN T K, et al. Confidence check-adaptive federated Kalman filter and its application in underwater vehicle integrated navigation[J]. Chinese Journal of Ship Research, 2022, 17(1): 203–211, 220. DOI: 10.19693/j.issn.1673-3185.02216
Citation: CHEN S, WANG N, CHEN T K, et al. Confidence check-adaptive federated Kalman filter and its application in underwater vehicle integrated navigation[J]. Chinese Journal of Ship Research, 2022, 17(1): 203–211, 220. DOI: 10.19693/j.issn.1673-3185.02216

Confidence check-adaptive federated Kalman filter and its application in underwater vehicle integrated navigation

More Information
  • Received Date: December 06, 2020
  • Revised Date: March 07, 2021
  • Official website online publication date: May 25, 2021
© 2022 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives  In order to solve the problem of the reduced accuracy of integrated navigation when a carrier is disturbed, a confidence check-adaptive federated Kalman filter (CC-AFKF) framework is proposed.
      Methods  First, the electronic compass (EC), global positioning system (GPS) and inertial navigation system (INS) are combined. Second, a confidence check model is constructed to effectively filter out low-confidence measurements in the INS/GPS and INS/EC subsystems, and ensure the accuracy of the measured value. Finally, an adaptive adjustment factor strategy for the INS/GPS and INS/EC systems is proposed to effectively adjust system noise covariance during the update process.
      Results  A large number of related tests are carried out through an underwater vehicle equipped with INS/GPS/EC integrated navigation systems. The test results show that the CC-AFKF algorithm proposed in this paper can improve the integrated accuracy of position and velocity by at least 29% compared with typical KF and FKF algorithms.
      Conclusions  The results of this study can provide corresponding directions and ideas for research on loosely coupled integrated navigation systems.
  • [1]
    GREWAL M S, ANDREWS A P, BARTONE C G. Global navigation satellite systems, inertial navigation, and integration[M]. Hoboken: John Wiley & Sons, 2006: 23-24.
    [2]
    YANG Y X, GAO W G. An optimal adaptive Kalman filter[J]. Journal of Geodesy, 2006, 80(4): 177–183. doi: 10.1007/s00190-006-0041-0
    [3]
    周先林, 张慧君, 和涛, 等. GPS/INS松耦合组合导航的自适应卡尔曼滤波算法研究[J]. 时间频率学报, 2020, 43(3): 222–230.

    ZHOU X L, ZHANG H J, HE T, et al. Research on adaptive Kalman filter algorithm for GPS/INS loosely coupled integrated navigation[J]. Journal of Time and Frequency, 2020, 43(3): 222–230 (in Chinese).
    [4]
    吕建新, 周翟和, 伏家杰, 等. 自适应联邦卡尔曼滤波在机器人组合导航系统中的应用研究[J]. 测控技术, 2017, 36(6): 15–19. doi: 10.3969/j.issn.1000-8829.2017.06.004

    LV J X, ZHOU Z H, FU J J, et al. Application of adaptive federated Kalman filter in robot integrated navigation system[J]. Measurement & Control Technology, 2017, 36(6): 15–19 (in Chinese). doi: 10.3969/j.issn.1000-8829.2017.06.004
    [5]
    LI Z K, WANG J, GAO J X. An enhanced GPS/INS integrated navigation system with GPS observation expansion[J]. The Journal of Navigation, 2016, 69(5): 1041–1060. doi: 10.1017/S0373463315001083
    [6]
    JIANG W, LI Y, RIZOS C. Optimal data fusion algorithm for navigation using triple integration of PPP-GNSS, INS, and terrestrial ranging system[J]. IEEE Sensors Journal, 2015, 15(10): 5634–5644. doi: 10.1109/JSEN.2015.2447015
    [7]
    MA X S, ZHANG T W, LIU X X. Application of adaptive federated filter based on innovation covariance in underwater integrated navigation system[C]//Proceedings of the 2018 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO). Hangzhou, China: IEEE, 2018: 209-213.
    [8]
    LIU X H, LIU X X, YANG Y, et al. An improved Federated Filter navigation algorithm for UAV[C]//Proceedings of the 2019 Chinese Automation Congress (CAC). Hangzhou, China: IEEE, 2019: 1621-1625.
    [9]
    MALLESWARAN M, VAIDEHI V, MOHANKUMAR M. A hybrid approach for GPS/INS integration using Kalman filter and IDNN[C]//Proceedings of the 3rd International Conference on Advanced Computing. Chennai, India: IEEE, 2011: 378-383.
    [10]
    SUNG K, KIM H. Simplified KF-based energy-efficient vehicle positioning for smartphones[J]. Journal of Communications and Networks, 2020, 22(2): 93–107. doi: 10.1109/JCN.2020.000003
    [11]
    ABOSEKEEN A, NOURELDIN A, KORENBERG M J. Improving the RISS/GNSS land-vehicles integrated navigation system using magnetic azimuth updates[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(3): 1250–1263. doi: 10.1109/TITS.2019.2905871
    [12]
    GARCÍA-LIGERO M J, HERMOSO-CARAZO A, LINARES-PÉREZ J. Distributed fusion estimation in networked systems with uncertain observations and Markovian random delays[J]. Signal Processing, 2015, 106: 114–122. doi: 10.1016/j.sigpro.2014.07.003
    [13]
    崔平远, 黄晓瑞. 基于联合卡尔曼滤波的多传感器信息融合算法及其应用[J]. 电机与控制学报, 2001, 5(3): 204–207. doi: 10.3969/j.issn.1007-449X.2001.03.017

    CUI P Y, HUANG X R. Multi-sensor information fusion algorithm based on federal Kalman filter and its application[J]. Electric Machines and Control, 2001, 5(3): 204–207 (in Chinese). doi: 10.3969/j.issn.1007-449X.2001.03.017
    [14]
    ZHANG C, LI T S, GUO C. GPS/INS integration based on adaptive interacting multiple model[J]. The Journal of Engineering, 2019, 2019(15): 561–565. doi: 10.1049/joe.2018.9381
    [15]
    严恭敏, 翁浚. 捷联惯导算法与组合导航原理[M]. 西安: 西北工业大学出版社, 2019: 76–80.

    YAN G M, WENG J. Strapdown inertial navigation algorithm and integrated navigation principle[M]. Xi'an: Northwestern Polytechnical University Press, 2019: 76–80. (in Chinese)
    [16]
    SHEN K, WANG M L, FU M Y, et al. Observability analysis and adaptive information fusion for integrated navigation of unmanned ground vehicles[J]. IEEE Transactions on Industrial Electronics, 2020, 67(9): 7659–7668.
    [17]
    XIONG H L, MAI Z Z, TANG J, et al. Robust GPS/INS/DVL navigation and positioning method using adaptive federated strong tracking filter based on weighted least square principle[J]. IEEE Access, 2019, 7: 26168–26178. doi: 10.1109/ACCESS.2019.2897222
    [18]
    MIAO Z B, ZHANG H T, ZHANG J Z. An accurate and generic testing approach to vehicle stability parameters based on GPS and INS[J]. Sensors, 2015, 15(12): 30469–30486. doi: 10.3390/s151229812
    [19]
    BRACE P, GOLDHAHN R, FERRI G, et al. Distributed information fusion in multistatic sensor networks for underwater surveillance[J]. IEEE Sensors Journal, 2016, 16(11): 4003–4014. doi: 10.1109/JSEN.2015.2431818
    [20]
    翟云峰, 王冠学, 徐国华, 等. 大尺度欠驱动高速AUV导航系统研制[J]. 中国舰船研究, 2018, 13(6): 78–86,93.

    ZHAI Y F, WANG G X, XU G H, et al. Development of navigation system for large-scale and high-speed underactuated AUV[J]. Chinese Journal of Ship Research, 2018, 13(6): 78–86,93 (in Chinese).
  • Related Articles

    [1]ZHANG Xiaolong, WANG Xiaoming, ZHANG Dongnan, ZHAO Xiaoyu, GUO Xudong, WANG Dong. Research on drag reduction of underwater vehicle shape based on deterministic and robust optimization[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.04343
    [2]XU Pengfei, LYU Tao, GE Tong, CHENG Hongxia, ZHAO Min. Rolling test and dynamics simulation of spherical underwater vehicle[J]. Chinese Journal of Ship Research, 2022, 17(6): 216-222. DOI: 10.19693/j.issn.1673-3185.02583
    [3]LUO Yihan, WU Jiaming, ZHOU Huifeng. Trajectory tracking control of underwater vehicle based on hydrodynamic parameters calculated by CFD[J]. Chinese Journal of Ship Research, 2022, 17(3): 237-245, 272. DOI: 10.19693/j.issn.1673-3185.02739
    [4]CHEN Haohua, ZHAO Hong, WANG Ning, GUO Chen, LU Ting, WANG Ning. Accurate track control of unmanned underwater vehicle under complex disturbances[J]. Chinese Journal of Ship Research, 2022, 17(2): 98-108. DOI: 10.19693/j.issn.1673-3185.02236
    [5]Shijin LYU, Yan GAO, Jin LIU, Qi SHEN. Application analysis on the wavenumber-frequency spectrum of pressure excited by a turbulent boundary layer on the wall of an underwater test vehicle[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.01581
    [6]LIU Ruixuan, ZHANG Yonglin. Task allocation of multiple autonomous underwater vehicles based on improved ant colony algorithm[J]. Chinese Journal of Ship Research, 2018, 13(6): 107-112. DOI: 10.19693/j.issn.1673-3185.01029
    [7]ZHAO Rui, XU Jian, WANG Miao, XIANG Xianbo, XU Guohua. Heading control of AUV based on GA and fractional order technology[J]. Chinese Journal of Ship Research, 2018, 13(6): 87-93. DOI: 10.19693/j.issn.1673-3185.01185
    [8]WANG Jianguo, JIANG Chunmeng, WU Fangliang, ZHOU Yimei. 水下航行体的改进S面运动控制器[J]. Chinese Journal of Ship Research, 2013, 8(5): 41-45. DOI: 10.3969/j.issn.1673-3185.2013.05.007
    [9]Ai Haifeng, Chen Zhijian. Analysis of Longitudinal Vibration Characteristics of Underwater Vehicle[J]. Chinese Journal of Ship Research, 2007, 2(6): 59-61. DOI: 10.3969/j.issn.1673-3185.2007.06.012
    [10]Liu Zuyuan, Cheng Xide, He Hanbao, Xu Jian. A Study on Maneuverability of Underwater Vehicle Motion near Sea Bottom[J]. Chinese Journal of Ship Research, 2006, 1(2): 7-12. DOI: 10.3969/j.issn.1673-3185.2006.02.002
  • Other Related Supplements

  • Cited by

    Periodical cited type(7)

    1. 陈启航,罗威,谢晓乐,代涛,潘景辉. 基于残差自适应的纯方位伪线性卡尔曼滤波跟踪方法. 舰船科学技术. 2025(04): 130-136 .
    2. 王继祥,张增猛,李洪波,弓永军. 船体表面海生物水下清洗机器人研究现状及关键技术进展. 船舶工程. 2024(02): 146-164 .
    3. 翁昱,曾庆军,李维,李昂,戴晓强. 基于改进的联邦UKF无人艇组合导航系统设计. 船舶与海洋工程. 2024(02): 15-19+26 .
    4. 李杰,梁玉琴,李昃雯,秦硕,程遵堃. 一种基于联邦滤波的SINS/GNSS/RA弹载多源组合导航算法. 上海航天(中英文). 2023(02): 106-111 .
    5. 蒋超,廖俊蓉,周红坤,邓玉聪,万晟,杨明东. 基于LabVIEW的水下航行器姿态测量实验系统. 实验室研究与探索. 2023(04): 138-142 .
    6. 张学峰,王仕仪,刘傲,任彬,郁洋. 基于ROS的室内导航配送机器人设计. 现代信息科技. 2022(12): 159-164 .
    7. 李鑫. 基于无线网络通信的机器人自动导航系统设计. 自动化与仪表. 2022(12): 44-48+53 .

    Other cited types(5)

Catalog

    Article views (842) PDF downloads (82) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return