您的位置: 首页 > 2022年4月 第37卷 第4期 > 文字全文
2022年4月 第37卷 第4期
目录

过敏性结膜炎发病机制的研究进展

来源期刊: 眼科学报 | 2022年4月 第37卷 第4期 342-347 发布时间: 收稿时间:2023/1/29 15:51:52 阅读量:5894
作者:
 
1.中山大学附属第一医院眼科,广州 510080 广州 510080
关键词:
过敏性结膜炎发病机制免疫调节菌群调节机制神经调节机制
DOI:
10.3978/j.issn.1000-4432.2022.02.01
收稿时间:
 
修订日期:
 
接收日期:
 
过敏性结膜炎经典的发病机制包括了IgE介导的I型超敏反应以及T淋巴细胞介导的IV型超敏反应,其中肥大细胞、肥大细胞脱颗粒释放的组胺、嗜酸性粒细胞等在过敏性结膜炎病理发展中发挥了重要作用。然而,临床发现针对上述机制的治疗药物临床疗效欠佳,有相当数量的过敏性结膜炎患者无法获得较好的生存质量,因此研究和阐明过敏性结膜炎的新机制,寻找新的治疗手段和药物靶点具有重要的临床意义。目前研究发现Th17细胞等多种炎性细胞和IL-17等细胞因子、过敏原介导神经调节机制、菌群失调机制、脂质介质作用方面可能与过敏性结膜炎发病相关,这对过敏性结膜炎新机制的研究有着重大的临床意义。本文将对过敏性结膜炎发病机制的新进展进行综述,以期为过敏性结膜炎的治疗提供新思路。
    过敏性结膜炎(allergic conjunctivitis,AC)是结膜对外界变应原产生超敏反应的一种炎症性疾病,是临床上常见的过敏性疾病之一。据流行病学资料统计,过敏性结膜炎的全球发病率 为30%~40%。过敏性结膜炎通常分为以下几类亚型:季节性过敏性结膜炎(seasonal allergic conjunctivitis ,SAC) 、常年性过敏性结膜炎(perennial allergic conjunctivitis,PAC)、春季性角结膜炎(vernal keratoconjunctivitis,VKC)、巨乳头性结膜炎(giant papillary conjunctivitis,GPC)和特应性角结膜炎(atopic keratoconjunctivitis,AKC)。临床上以SAC和PAC较为多见。
    AC经典的发病机制主要与IgE介导的I型超敏反应以及T淋巴细胞介导的IV型超敏反应有关[1]。AC炎症反应主要分为2个阶段:早期相反应和晚期相反应。早期相反应是由IgE介导的超敏反应。患者接触过敏原后,特异性IgE结合致敏的肥大细胞,活化的肥大细胞诱导泪液中的组胺、胰蛋白酶、前列腺素和白三烯等分泌增加[2-3]。这一阶段在临床上持续20~30 min。肥大细胞脱颗粒还诱导血管内皮细胞的活化,继而表达趋化因子和黏附分子,如细胞间黏附分子(intercellular adhesion molecule,ICAM)、血管细胞黏附分子(vascular cell adhesion molecule,VCAM)[4]。这一阶段表现为局部血管扩张、血管壁通透性增高等。晚期相反应则是在反应启动4~6 h后,调控活化T细胞表达和分泌趋化因子,单核细胞趋化蛋白,IL-8、嗜酸性粒细胞趋化因子,巨噬细胞炎性蛋白等。这些因素启动了结膜中炎症细胞的募集,导致眼部迟发反应[5]。SAC和PAC都是眼部接触过敏原后引起的眼部变应性炎症反应,两者都以I型超敏反应为主[6]。VKC主要是由Th2淋巴细胞介导的眼表慢性过敏性炎症。Th2细胞产生IL-4、IL-5、IL-13等细胞因子,产生IgE类抗体,活化肥大细胞,使其脱颗粒。据研究[7]报道:IL-4和IL-13诱导细胞外基质的产生和结膜成纤维细胞的增殖,这一机制可能解释了VKC患者巨大乳头的形成。AKC是慢性过敏性结膜疾病,其发病过程主要包括IgE介导的肥大细胞脱颗粒,以及Th1和Th2淋巴细胞衍生的细胞因子介导的免疫反应,嗜酸性粒细胞也参与其中[6-7]。GPC则多由长期配戴角膜接触镜机械磨损,造成上睑结膜炎症反应和增生性改变[8],而并非过敏原引起的过敏反应。外界某种物质作为抗原刺激IgE的产生,机械损伤和慢性刺激导致结膜上皮细胞释放炎症介质(如CXCL8、TNF-α) [9]。然而,目前临床上针对上述机制的治疗手段,如抗组胺药,肥大细胞稳定剂,糖皮质激素以及非甾体抗炎药有时并不能取得满意的疗效,这提示了可能存在其他尚未发现的病理机制。因此研究和阐明过敏性结膜炎的新机制,寻找新的治疗手段和药物靶点具有重要的临床意义。本文将围绕近些年有关过敏性结膜炎发病机制的文章进行总结分析,从免疫调节机制、神经调节机制、菌群失调机制、脂质介质作用这4个方面进行阐述。

1 免疫调节机制

1.1 Th1/Th2 失衡

    过敏性疾病免疫级联反应涉及到多种分子机制,多种免疫活性细胞和炎症介质参与到疾病的发生、发展当中,其中CD4辅助T细胞(Th)在疾病调控中发挥重要作用。T h细胞根据细胞因子的产生分为Th1和Th2两类。Th1细胞产生IL-2、IFN-γ。Th2细胞产生IL-4、IL-5、IL-13等细胞因子。IL-4产生免疫球蛋白IgE,而IL-13诱导B细胞产生IgG4[10]。因此Th2细胞对于促进基于IgE的反应至关重要。已有较多研究[11-12]报道了Th2细胞介导的过敏性炎症反应失调的机制:在这些过敏性疾病中,如特应性哮喘、过敏性鼻炎,Th2细胞和Th2细胞因子的数量有所增加,Th1细胞和Th1细胞因子的数量有所减少。Th2淋巴细胞积聚在炎症部位,这些细胞通过分泌一系列细胞因子(如IL-4和IL-5)来调控过敏反应。因此Th1/Th2失衡,即TH2优势过表达在过敏性疾病的发生、发展中起至关重要的作用,寻找能够调控这种失衡的药物可能可以有效治疗过敏性疾病。

1.2 Th17 细胞机制

    近年来国外多项研究[13-14]表明:Th17细胞参与多种免疫炎症反应,包括牛皮癣、类风湿性关节炎、炎症性肠病、系统性红斑狼疮、哮喘等。Th17细胞主要发挥调节免疫应答和清除细胞外病原体的作用,其中IL-17是Th17细胞分泌的标志性细胞因子。目前研究[15]显示空气污染的加重及气候的变化会增加过敏性结膜炎的发病率,而Casta?eda等[16]的实验则进一步证实了空气污染通过增强Th17免疫反应引起过敏性反应的假说。
    在最近的一项实验中,研究者们[17]通过刺激和激活过敏性结膜炎小鼠模型,证实Th17细胞因子IL-17a和IL-17f可加重Th2介导的过敏性结膜炎炎症反应。这表明Th17细胞主要在过敏性结膜炎Th2免疫应答中发挥作用。Th2细胞和Th17细胞的激活都需要依赖树突状细胞(dendritic cells,DC)的激活[18-19],CD40和CD86信号通路在Th17细胞的诱导中起关键作用[20]。Kudo等[21]的研究表明:树突状细胞上的avb8整合素参与Th17细胞的分化过程。由于辅助性T细胞具有可塑性,在过敏性结膜炎发病过程中,活化的Th2细胞可以直接转化为Th17细胞。同时,T细胞在转化生长因子β(transforming growth factor-β,TGF-β)和抗原呈递细胞(antigen-presenting cells,APC)分泌的IL-6、IL-23作用下被激活分化为Th17细胞[20]。此外,AC中活化的DC和嗜酸性粒细胞也促进Th17的分化[18,22]。同样地,由于辅助性T细胞具有可塑性这一特性,Th17细胞在IL-4的刺激下可转化为产生IL-2的Th2细胞。同时,产生IL-17的T细胞诱导中性粒细胞增多,导致Th2介导的嗜酸性粒细胞增多[23]。有学者[17,24]已经证实IL-17a和IL-17f可以促进嗜酸性粒细胞CXCL1、IL-8和CCL4以及IL-1β和IL-6的产生。2017年的一项研究[25]则表明IL-17a通过提高IL-13激活信号传导及转录激活蛋白6(signal transducer and activator of transcription,STAT-6)等信号通路的能力,参与了过敏性疾病的病理生理过程。因此IL-17可以促使中性粒细胞、嗜酸性粒细胞及有关细胞因子的增多,从而增强Th2免疫应答反应。

2 神经调节机制

    神经性瘙痒是一种由神经调节失调引起的慢性疾病,通常表现为瘙痒,但也可能表现为典型的神经性疼痛症状,如灼烧感和刺痛感。过敏性结膜炎患者的眼部症状包括发痒、流泪、结膜和眼睑红肿。除瘙痒外,部分患者还有其他症状,包括灼烧、刺痛(65%)和疼痛(75%)[26]
    眼表受三叉神经节初级感觉神经元支配,传入C纤维表达瞬时受体电位(transient receptor potential , TRP) 通道。瞬时受体电位香草素1(transient receptor potential vanillin 1,TRPV1)和瞬时受体电位锚定蛋白1(transient receptor potential anchoring protein 1,TRPA1)是过敏性反应中重要的TRP通道。TRPV1被认为是神经性疼痛的主要原因。眼内TRPV1/TRPA1受体的激活诱导神经分裂素、降钙素基因相关肽(calcitonin gene related peptide,CGRP)和P物质等神经肽的释放。P物质和CGRP引起伤害性纤维的反向刺激,导致C纤维激活,协同增强过敏性炎症反应。TRPV1在非变应性鼻炎和哮喘患者中表达和P物质水平显著升高[27]。2017年,Azimi等[28]在小鼠模型中描述了P物质介导的M C受体激活在诱导瘙痒中的作用。此外,前列腺素E2、缓激肽等内源性炎症性过敏介质可显著提高TRPV1的敏感性,降低其激活感觉神经的阈值[29]。肥大细胞和其他细胞(如气道上皮)释放神经营养因子[30]。神经生长因子是一种复杂的神经可塑性调节因子,可使传入神经更加敏感。例如神经生长因子可直接作用于C纤维痛觉感受器,增强TRPV1受体,并增加P物质和TRPV1的表达,最终转化为痛觉和疼痛。中枢神经机制也被认为与过敏性炎症有关。大脑高级结构的功能异常,可引起继发性痛觉过敏和异位性痛觉,从而促进炎症性疼痛的增强。长期暴露于过敏原导致中枢神经系统神经元内在膜特性的表型改变,导致兴奋性增加。
    综上,在AC的一系列症状中,一些特征症状如灼烧感和刺痛感,可能与过敏原诱导的神经调节机制有关。因此,神经源性机制可能在慢性眼表炎症中发挥重要作用。

3 菌群失调机制

    数以万计的微生物寄生于人体体表组织,如皮肤、呼吸道、肠道等,不同组织、不同个体之间都存在微生物多样性差异。健康的微生物环境不仅不会对人体产生有害影响,还在消化代谢、免疫调节等发挥了重要作用。然而,微生物菌群环境失衡可能会导致一些疾过敏性疾病的发生[31]。国外一些研究[32-33]在AD患者及AD小鼠模型中观察到了皮肤有益共生菌定植的减少和潜在致病性金黄色葡萄球菌的增加。新生儿气道病原菌定植,即早期上呼吸微生物组成与哮喘的发生有关[34]。结膜作为与外界环
境接触的眼表一半透明黏膜组织,同样存在多种微生物定植。最近日本一项研究[35]发现移植物抗宿主病患者的眼表微生物环境更为复杂多样,可观察到葡萄球菌、α-血链球菌、棒状杆菌、Acnes丙酸杆菌等,而在健康人结膜组织中仅检测到少数种类。另一项研究[36]则证实Stevens Johnson综合征患者结膜组织中存在包括致病菌在内的大量微生物菌群。这提示结膜微生物多样性可能与自身免疫性疾病有关。微生物菌群可能通过产生多种免疫原性蛋白,引起特异性IgE抗体的产生,从而诱导促炎细胞因子如TNF-α、IL-6、IL-8的释放。也有研究[37]证实共生菌群失衡诱导阳性Treg细胞和Th17细胞产生2型免疫应答过表达这一机制会导致过敏性疾病。一项对AC患者和健康对照进行宏基因组测序的研究[38]发现细菌是人结膜微生物环境中的重要成分,而健康对照与AC患者的结膜微生物组成成分存在差异。这项研究还观察到部分SAC和PAC患者结膜微环境马拉色菌属(尤其是糠皮菌)的富集及VKC患者结膜微环境链球菌的富集。这表明结膜微生物菌群失调可能参与了AC的发生发展。由此,通过改变患者眼部微环境可为治疗AC提供新思路。

4 脂质介质作用

    脂质在人体中主要发挥三大生理功能,包括提供能量、生物膜的主要成分以及参与体内信号转导。脂质介质主要是在各种刺激下由生物膜磷脂裂解的脂肪酸生物合成并作为介质释放。其中,前列腺素、血栓素、白三烯作为经典的促炎脂类介质,由花生四烯酸衍生而来,与炎症、过敏反应密切相关。先前的研究已经观察到在急性春季结膜炎患者泪液前列腺素F 2α(prostaglandin F2α,PGF2α)的升高,豚草花粉过敏性结膜炎患者泪液前列腺素D2(prostaglandin D2,PGD2)的升高[39],这些都提示脂质介质可能参与到过敏性结膜炎的发病机制中。另外,脂质介质在嗜酸性粒细胞的调节中也发挥作用[40]。根据脂质介质的种类不同,调节有正向调节和负向调节。研究[41-42]证实在一些脂质介质受体基因敲除的过敏性疾病小鼠模型中观察到相对应的嗜酸性粒细胞的浸润数量改变,从而导致过敏症状加重或减弱。
    有研究[43]证实omega-3对过敏性疾病具有抑制作用,对哮喘或特应性皮炎患者补充omega-3可以改善相应疾病。低omega-3摄入则会增加过敏性疾病发生风险增加[44]。花生四烯酸是哺乳动物体内含量最丰富的omega-6之一。omega-3和omega-6是竞争性通过基本相同的途径代谢。由于哺乳动物体内缺乏将omega-6转化为omega-3的酶,因此两者的摄入平衡对于过敏性疾病的发生、发展起到一定的作用。日本一项研究[45]证实:前列腺素D2α (prostaglandin D2α,PGD2α)、前列腺素E2(prostaglandin E2,PGE2)、PGF2α、前列腺素I2(prostaglandin I2,PGI2)、血栓素A2(thromboxane A2,TXA2)和白三烯B4(leukotriene B4,LTB4)在过敏性结膜炎小鼠模型中高表达;同时,在饲喂富含omega-3的小鼠模型中,前列腺素、血栓素、白三烯以及嗜酸性细胞浸润数量减少,但结膜中Th2细胞相关趋化因子的表达水平未受影响。这表明omega-3通过导致花生四烯酸及其衍生介质即促炎脂质介质的减少从而减轻过敏性结膜炎的炎症反应以及omega-3对过敏性结膜炎的改善作用并不通过影响Th2免疫反应这一途径,证实了脂质介质参与到过敏性结膜炎新的发病机制。

5 结语

    目前,治疗过敏性结膜炎的目标是在发病的初始阶段减少过敏性反应相关的炎症级联反应,并根据过敏性结膜炎的类型、发病机制、症状针对性选择不同药物。这些都对临床合理治疗过敏性结膜炎起到了至关重要的作用。尽管我们对过敏性结膜炎的新机制已经有了新的认识,但针对这些机制的药物研究以及临床应用仍有争议。近年来有关过敏性结膜炎的机制研究不断深入,研究者们已经在Th17及IL-17免疫调节机制、过敏原介导神经调节机制、菌群失调机制、脂质介质作用方面等取得了进展,这些机制为过敏性结膜炎经典机制不能解释的一些问题做了补充。相信未来随着对过敏性结膜炎机制的不断研究与深入,为过敏性结膜炎的治疗寻获新的药物靶点将不再是难题。

开放获取声明

    本文适用于知识共享许可协议 ( Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。详情请访问:https://creativecommons.org/licenses/by-nc-nd/4.0/
1、Miyazaki D, Takamura E, Uchio E, et al. Japanese guidelines for allergic conjunctival diseases 2020[ J]. Allergol Int, 2020, 69(3): 346-355.
2、Leonardi A. Allergy and allergic mediators in tears[ J]. Exp Eye Res, 2013, 117: 106-117.
3、Leonardi A, Di Stefano A, Vicari C, et al. Histamine H4 receptors in normal conjunctiva and in vernal keratoconjunctivitis[ J]. Allergy, 2011, 66(10): 1360-1366.
4、Zhang J, Alcaide P, Liu L, et al. Regulation of endothelial cell adhesion molecule expression by mast cells, macrophages, and neutrophils[ J]. PLoS One, 2011, 6(1): e14525.
5、Baiula M, Bedini A, Carbonari G, et al. Therapeutic targeting of eosinophil adhesion and accumulation in allergic conjunctivitis[ J]. Front Pharmacol, 2012, 3: 203.
6、Bonini S. Atopic keratoconjunctivitis[ J]. Allergy, 2004, 59(Suppl 78): 71-73.
7、Asano-Kato N, Fukagawa K, Okada N, et al. TGF-beta1, IL-1beta, and Th2 cytokines stimulate vascular endothelial growth factor production from conjunctival fibroblasts[ J]. Exp Eye Res, 2005, 80(4): 555-560.
8、Forister JF, Forister EF, Yeung KK, et al. Prevalence of contact lensrelated complications: UCLA contact lens study[ J]. Eye Contact Lens, 2009, 35(4): 176-180.
9、Donshik PC, Ehlers WH, Ballow M. Giant papillary conjunctivitis[ J]. Immunol Allergy Clin North Am, 2008, 28(1): 83-103, vi.
10、Meiler F, Klunker S, Zimmermann M, et al. Distinct regulation of IgE, IgG4 and IgA by T regulatory cells and toll-like receptors[ J]. Allergy, 2008, 63(11): 1455-1463.
11、Shi YH, Shi GC, Wan HY, et al. Coexistence of Th1/Th2 and Th17/Treg imbalances in patients with allergic asthma[ J]. Chin Med J (Engl), 2011, 124(13): 1951-1956.
12、Zhu X, Wang X, Wang Y, et al. Exosomal long non-coding RNA GAS5 suppresses Th1 differentiation and promotes Th2 differentiation via downregulating EZH2 and T-bet in allergic rhinitis[ J]. Mol Immunol, 2020, 118: 30-39.
13、Kim KW, Kim HR , Kim BM, et al. Th17 c y tokines regulate osteoclastogenesis in rheumatoid arthritis[ J]. Am J Pathol, 2015, 185(11): 3011-3024.
14、Sarra M, Pallone F, Macdonald TT, et al. IL-23/IL-17 axis in IBD[ J]. Inflamm Bowel Dis, 2010, 16(10): 1808-1813.
15、Hong J, Zhong T, Li H, et al. Ambient air pollution, weather changes, and outpatient visits for allergic conjunctivitis: A retrospective registry study[ J]. Sci Rep, 2016, 6: 23858.
16、Casta?eda AR, Vogel CFA, Bein KJ, et al. Ambient particulate matter enhances the pulmonary allergic immune response to house dust mite in a BALB/c mouse model by augmenting Th2- and Th17-immune responses[ J]. Physiol Rep, 2018, 6(18): e13827.
17、Chen X, Deng R, Chi W, et al. IL-27 signaling deficiency develops Th17-enhanced Th2-dominant inflammation in murine allergic conjunctivitis model[ J]. Allergy, 2019, 74(5): 910-921.
18、Vroman H, van den Blink B, Kool M. Mode of dendritic cell activation: the decisive hand in Th2/Th17 cell differentiation[ J]. Immunobiology, 2015, 220(2): 254-261.
19、Vroman H, Bergen IM, van Hulst JAC, et al. TNF-α-induced protein 3 levels in lung dendritic cells instruct TH2 or TH17 cell differentiation in eosinophilic or neutrophilic asthma[ J]. J Allergy Clin Immunol, 2018, 141(5): 1620-1633.e12.
20、Huang G, Wang Y, Chi H. Regulation of TH17 cell differentiation by innate immune signals[ J]. Cell Mol Immunol, 2012, 9(4): 287-295.
21、Kudo M, Melton AC, Chen C, et al. IL-17A produced by αβ T cells drives airway hyper-responsiveness in mice and enhances mouse and human airway smooth muscle contraction[ J]. Nat Med, 2012, 18(4): 547-554.
22、Wang YH, Voo KS, Liu B, et al. A novel subset of CD4(+) T(H)2 memory/effector cells that produce inflammatory IL-17 cytokine and promote the exacerbation of chronic allergic asthma[ J]. J Exp Med, 2010, 207(11): 2479-2491.
23、Kinyanjui MW, Shan J, Nakada EM, et al. Dose-dependent effects of IL-17 on IL-13-induced airway inflammatory responses and airway hyperresponsiveness[ J]. J Immunol, 2013, 190(8): 3859-3868.
24、De Paiva CS, Chotikavanich S, Pangelinan SB, et al. IL-17 disrupts corneal barrier following desiccating stress[ J]. Mucosal Immunol, 2009, 2(3): 243-253.
25、Griseri T, Arnold IC, Pearson C, et al. Granulocyte macrophage colonystimulating factor-activated eosinophils promote interleukin-23 driven chronic colitis[ J]. Immunity, 2015, 43(1): 187-199.
26、Katelaris CH. Ocular allergy in the Asia Pacific region[ J]. Asia Pac Allergy, 2011, 1(3): 108-114.
27、Van Gerven L, Alpizar YA, Wouters MM, et al. Capsaicin treatment reduces nasal hyperreactivity and transient receptor potential cation channel subfamily V, receptor 1 (TRPV1) overexpression in patients with idiopathic rhinitis[ J]. J Allergy Clin Immunol, 2014, 133(5): 1332-9, 1339.e1-3.
28、Azimi E, Reddy VB, Pereira PJS, et al. Substance p activates mas-related G protein-coupled receptors to induce itch[ J]. J Allergy Clin Immunol, 2017, 140(2): 447-453.e3.
29、Raemdonck K, de Alba J, Birrell MA, et al. A role for sensory nerves in the late asthmatic response[ J]. Thorax, 2012, 67(1): 19-25.
30、Bresciani M, Lalibertè F, Lalibertè MF, et al. Nerve growth factor localization in the nasal mucosa of patients with persistent allergic rhinitis[ J]. Allergy, 2009, 64(1): 112-117.
31、Kemter AM, Nagler CR. Influences on allergic mechanisms through gut, lung, and skin microbiome exposures[ J]. J Clin Invest, 2019, 129(4): 1483-1492.
32、Kobayashi T, Glatz M, Horiuchi K, et al. Dysbiosis and staphylococcus aureus colonization drives inflammation in atopic dermatitis[ J]. Immunity, 2015, 42(4): 756-766.
33、Chng KR, Tay AS, Li C, et al. Whole metagenome profiling reveals skin microbiome-dependent susceptibility to atopic dermatitis flare[ J]. Nat Microbiol, 2016, 1(9): 16106.
34、Rahman Fink N, Chawes BL, Thorsen J, et al. Neonates colonized with pathogenic bacteria in the airways have a low-grade systemic inflammation[ J]. Allergy, 2018, 73(11): 2150-2159.
35、Shimizu E, Ogawa Y, Saijo Y, et al. Commensal microflora in human conjunctiva; characteristics of microflora in the patients with chronic ocular graft-versus-host disease[ J]. Ocul Surf, 2019, 17(2): 265-271.
36、Frizon L, Araújo MC, Andrade L, et al. Evaluation of conjunctival bacterial flora in patients with Stevens-Johnson Syndrome[ J]. Clinics (Sao Paulo), 2014, 69(3): 168-172.
37、Ohnmacht C, Park J H, Cording S, et al. The microbiota regulates type 2 immunity through RORgammat(+) T cells[ J].Science, 2015, 349(6251): 989-93.
38、Liang Q, Li J, Zhang S, et al. Characterization of conjunctival microbiome dysbiosis associated with allergic conjunctivitis[ J]. Allergy, 2021, 76(2): 596-600.
39、Pelikan Z. Inflammatory mediator profiles in tears accompanying keratoconjunctival responses induced by nasal allergy[ J]. Br J Ophthalmol, 2013, 97(7): 820-828.
40、Fujishima H, Fukagawa K, Okada N, et al. Prostaglandin D2 induces chemotaxis in eosinophils via its receptor CRTH2 and eosinophils may cause severe ocular inflammation in patients with allergic conjunctivitis[ J]. Cornea, 2005, 24(8 Suppl): S66-S70.
41、Terawaki K, Yokomizo T, Nagase T, et al. Absence of leukotriene B4 receptor 1 confers resistance to airway hyperresponsiveness and Th2-type immune responses[ J]. J Immunol, 2005, 175(7): 4217-4225.
42、Ueta M, Matsuoka T, Narumiya S, et al. Prostaglandin E receptor subtype EP3 in conjunctival epithelium regulates late-phase reaction of experimental allergic conjunctivitis[ J]. J Allergy Clin Immunol, 2009, 123(2): 466-471.
43、Miyata J, Arita M. Role of omega-3 fatty acids and their metabolites in asthma and allergic diseases[ J]. Allergol Int, 2015, 64(1): 27-34.
44、Burns JS, Dockery DW, Neas LM, et al. Low dietary nutrient intakes and respiratory health in adolescents[ J]. Chest, 2007, 132(1): 238-245.
45、Hirakata T, Lee HC, Ohba M, et al. Dietary ω-3 fatty acids alter the lipid mediator profile and alleviate allergic conjunctivitis without modulating Th2 immune responses[ J]. FASEB J, 2019, 33(3): 3392-3403.
1、桂梦汝,年婉青,邬丽霞等.舌下含服粉尘螨滴剂特异性免疫治疗儿童过敏性结膜炎的临床效果[J].中国当代医药,2023,30(14):107-110.
2、陈金男,田曼.NLRP3在儿童常见过敏性疾病中作用机制的研究进展[J].现代医学,2023,51(02):241-245.
3、张丹丹,牛世煜,周凌等.周凌运用麻黄连翘赤小豆汤治疗五官科过敏性疾病经验浅析[J].中国中医眼科杂志,2023,33(01):37-40.DOI:10.13444/j.cnki.zgzyykzz.2023.01.008.
4、周艳艳,文皓頲,杨倚天等.盐酸氮卓斯汀滴眼液对实验动物眼部的安全性评价试验[J].药品评价,2022,19(21):1305-1308.DOI:10.19939/j.cnki.1672-2809.2022.21.07.
5、关晓莹,彭彦楚,王燕等.基于五运六气理论对580例过敏性角膜炎患者禀赋特征的研究[J].中国中医眼科杂志,2023,33(10):932-938+947.DOI:10.13444/j.cnki.zgzyykzz.2023.10.007.
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    浏览