Skip to main content

Advertisement

Log in

Parallelization strategies for resolved simulations of fluid-structure-particle interactions

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Fluid-structure-particle interactions in three spatial dimensions happen in many environmental and engineering flows. This paper presents the parallel algorithms for the hybrid diffuse and sharp interface immersed boundary (IB) method developed in our previous work. For the moving structure modeled using the sharp interface IB method, a recursive box method is developed for efficiently classifying the background grid nodes. For the particles modeled using the diffuse interface IB method, a ‘master-slave’ approach is adopted. For the particle-particle interaction (PPI) and particle-structure interaction (PSI), a fast algorithm for classifying the active and inactive Lagrangian points, which discretize the particle surface, is developed for the ‘dry’ contact approach. The results show that the proposed recursive box method can reduce the classifying time from 52 seconds to 0.3 seconds. Acceptable parallel efficiency is obtained for cases with different particle concentrations. Furthermore, the lubrication model is utilized when a particle approaches a wall, enabling an accurate simulation of the rebounding phenomena in the benchmark particle-wall collision problem. At last, the capability of the proposed computational framework is demonstrated by simulating particle-laden turbulent channel flows with rough walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. QIN, J., YANG, X., and LI, Z. Hybrid diffuse and sharp interface immersed boundary methods for particulate flows in the presence of complex boundaries. Communications in Computational Physics, 31(4), 1242–1271 (2022)

    Article  MathSciNet  Google Scholar 

  2. PESKIN, C. S. The immersed boundary method. Acta Numerica, 11, 479–517 (2002)

    Article  MathSciNet  Google Scholar 

  3. MITTAL, R. and IACCARINO, G. Immersed boundary methods. Annual Review of Fluid Mechanics, 37, 239–261 (2005)

    Article  MathSciNet  Google Scholar 

  4. SOTIROPOULOS, F. and YANG, X. Immersed boundary methods for simulating fluid-structure interaction. Progress in Aerospace Sciences, 65, 1–21 (2014)

    Article  Google Scholar 

  5. HUANG, W. X. and TIAN, F. B. Recent trends and progress in the immersed boundary method. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(23–24), 7617–7636 (2019)

    Google Scholar 

  6. GRIFFITH, B. E. and PATANKAR, N. A. Immersed methods for fluid-structure interaction. Annual Review of Fluid Mechanics, 52, 421–448 (2020)

    Article  MathSciNet  Google Scholar 

  7. PESKIN, C. S. Flow patterns around heart valves: a numerical method. Journal of Computational Physics, 10(2), 252–271 (1972)

    Article  MathSciNet  Google Scholar 

  8. UHLMANN, M. An immersed boundary method with direct forcing for the simulation of particulate flows. Journal of Computational Physics, 209(2), 448–476 (2005)

    Article  MathSciNet  Google Scholar 

  9. HUANG, Q., TIAN, F. B., YOUNG, J., and LAI, J. C. S. Transition to chaos in a two-sided collapsible channel flow. Journal of Fluid Mechanics, 926, A15 (2021)

    Article  MathSciNet  Google Scholar 

  10. KOLAHDOUZ, E. M., BHALLA, A. P. S., SCOTTEN, L. N., CRAVEN, B. A., and GRIFFITH, B. E. A sharp interface Lagrangian-Eulerian method for rigid-body fluid-structure interaction. Journal of Computational Physics, 443, 110442 (2021)

    Article  MathSciNet  Google Scholar 

  11. QIN, J., KOLAHDOUZ, E. M., and GRIFFITH, B. E. An immersed interface-lattice Boltzmann method for fluid-structure interaction. Journal of Computational Physics, 428, 109807 (2021)

    Article  MathSciNet  Google Scholar 

  12. GE, L. and SOTIROPOULOS, F. A numerical method for solving the 3D unsteady incompressible Navier-Stokes equations in curvilinear domains with complex immersed boundaries. Journal of Computational Physics, 225(2), 1782–1809 (2007)

    Article  MathSciNet  Google Scholar 

  13. HERTZ, H. Über die Berührung fester elastischer Körper. Journal für Die Reine und Angewandte Mathematik, 92(156–171), 22 (1882)

    Google Scholar 

  14. MINDLIN, R. D. and DERESIEWICZ, H. Elastic spheres in contact under varying oblique forces. Journal of Applied Mechanics, 20, 327–344 (1953)

    Article  MathSciNet  Google Scholar 

  15. BORAZJANI, I., GE, L., and SOTIROPOULOS, F. Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. Journal of Computational Physics, 227(16), 7587–7620 (2008)

    Article  MathSciNet  Google Scholar 

  16. YU, Z., LIN, Z., SHAO, X., and WANG, L. P. A parallel fictitious domain method for the interface-resolved simulation of particle-laden flows and its application to the turbulent channel flow. Engineering Applications of Computational Fluid Mechanics, 10(1), 160–170 (2016)

    Article  Google Scholar 

  17. GENEVA, N., PENG, C., LI, X., and WANG, L. P. A scalable interface-resolved simulation of particle-laden flow using the lattice Boltzmann method. Parallel Computing, 67, 20–37 (2017)

    Article  MathSciNet  Google Scholar 

  18. UHLMANN, M. Simulation of particulate flows on multi-processor machines with distributed memory. CIEMAT Technical Report No. 1039, Madrid, Spain (2003)

  19. WANG, S., HE, G., and ZHANG, X. Parallel computing strategy for a flow solver based on immersed boundary method and discrete stream-function formulation. Computers & Fluids, 88, 210–224 (2013)

    Article  MathSciNet  Google Scholar 

  20. YANG, Y. and BALACHANDAR, S. A scalable parallel algorithm for direct-forcing immersed boundary method for multiphase flow simulation on spectral elements. Journal of Supercomputing, 77, 2897–2927 (2021)

    Article  Google Scholar 

  21. ZHU, Z., HU, R., LEI, Y., SHEN, L., and ZHENG, X. Particle resolved simulation of sediment transport by a hybrid parallel approach. International Journal of Multiphase Flow, 152, 104072 (2022)

    Article  MathSciNet  Google Scholar 

  22. YANG, X., SOTIROPOULOS, F., CONZEMIUS, R. J., WACHTLER, J. N., and STRONG, M. B. Large-eddy simulation of turbulent flow past wind turbines/farms: the virtual wind simulator (VWiS). Wind Energy, 18(12), 2025–2045 (2015)

    Article  Google Scholar 

  23. LIAO, F. and YANG, X. On the capability of the curvilinear immersed boundary method in predicting near-wall turbulence of turbulent channel flows. Theoretical and Applied Mechanics Letters, 11(4), 100279 (2021)

    Article  Google Scholar 

  24. QIN, J., ANDREOPOULOS, Y., JIANG, X., DONG, G., and CHEN, Z. Efficient coupling of direct forcing immersed boundary-lattice Boltzmann method and finite element method to simulate fluid-structure interactions. International Journal for Numerical Methods in Fluids, 92(6), 545–572 (2020)

    Article  MathSciNet  Google Scholar 

  25. YANG, X., ZHANG, X., LI, Z., and HE, G. W. A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations. Journal of Computational Physics, 228(20), 7821–7836 (2009)

    Article  MathSciNet  Google Scholar 

  26. KLOSS, C., GONIVA, C., HAGER, A., AMBERGER, S., and PIRKER, S. Models, algorithms and validation for open-source DEM and CFD-DEM. Progress in Computational Fluid Dynamics, 12(2–3), 140–152 (2012)

    Article  MathSciNet  Google Scholar 

  27. KAČIANAUSKAS, R., MAKNICKAS, A., KAČENIAUSKAS, A., MARKAUSKAS, D., and BALEVIČIUS, R. Parallel discrete element simulation of poly-dispersed granular material. Advances in Engineering Software, 41(1), 52–63 (2010)

    Article  Google Scholar 

  28. BERGER, R., KLOSS, C., KOHLMEYER, A., and PIRKER, S. Hybrid parallelization of the LIGGGHTS open-source DEM code. Powder Technology, 278, 234–247 (2015)

    Article  Google Scholar 

  29. COSTA, P., BOERSMA, B. J., WESTERWEEL, J., and BREUGEM, W. P. Collision model for fully resolved simulations of flows laden with finite-size particles. Physical Review E, 92(5), 053012 (2015)

    Article  MathSciNet  Google Scholar 

  30. ZHOU, Z., JIN, G., TIAN, B., and REN, J. Hydrodynamic force and torque models for a particle moving near a wall at finite particle Reynolds numbers. International Journal of Multiphase Flow, 92, 1–19 (2017)

    Article  MathSciNet  Google Scholar 

  31. XIA, Y., XIONG, H., YU, Z., and ZHU, C. Effects of the collision model in interface-resolved simulations of particle-laden turbulent channel flows. Physics of Fluids, 32, 103303 (2020)

    Article  Google Scholar 

  32. JEFFREY, D. Low-Reynolds-number flow between converging spheres. Mathematika, 29, 58–66 (1982)

    Article  MathSciNet  Google Scholar 

  33. BIEGERT, E., VOWINCKEL, B., and MEIBURG, E. A collision model for grain-resolving simulations of flows over dense, mobile, polydisperse granular sediment beds. Journal of Computational Physics, 340, 105–127 (2017)

    Article  MathSciNet  Google Scholar 

  34. GONDRET, P., LANCE, M., and PETIT, L. Bouncing motion of spherical particles in fluids. Physics of Fluids, 14(2), 643–652 (2002)

    Article  Google Scholar 

  35. LI, S., YANG, X., JIN, G., and HE, G. Wall-resolved large-eddy simulation of turbulent channel flows with rough walls. Theoretical and Applied Mechanics Letters, 11(1), 100228 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolei Yang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 12202456 and 12172360), the Basic Science Center Program for “Multiscale Problems in Nonlinear Mechanics” of the National Natural Science Foundation of China (No. 11988102), and the China Postdoctoral Science Foundation (No. 2021M693241)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, J., Liao, F., Dong, G. et al. Parallelization strategies for resolved simulations of fluid-structure-particle interactions. Appl. Math. Mech.-Engl. Ed. 45, 857–872 (2024). https://doi.org/10.1007/s10483-024-3115-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-024-3115-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification