中国新型抗肿瘤药物现状分析及启示

孙雯娟, 张波

孙雯娟, 张波. 中国新型抗肿瘤药物现状分析及启示[J]. 协和医学杂志, 2022, 13(6): 1036-1044. DOI: 10.12290/xhyxzz.2021-0521
引用本文: 孙雯娟, 张波. 中国新型抗肿瘤药物现状分析及启示[J]. 协和医学杂志, 2022, 13(6): 1036-1044. DOI: 10.12290/xhyxzz.2021-0521
SUN Wenjuan, ZHANG Bo. Current Situation and Implications of Novel Antitumer Drugs in China[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(6): 1036-1044. DOI: 10.12290/xhyxzz.2021-0521
Citation: SUN Wenjuan, ZHANG Bo. Current Situation and Implications of Novel Antitumer Drugs in China[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(6): 1036-1044. DOI: 10.12290/xhyxzz.2021-0521

中国新型抗肿瘤药物现状分析及启示

基金项目: 

中央高水平医院临床科研业务费资助 2022-PUMCH-B-059

详细信息
    通讯作者:

    张波, E-mail: zhangbopumch@163.com

  • 中图分类号: R95

Current Situation and Implications of Novel Antitumer Drugs in China

Funds: 

National High Level Hospital Clinical Research Funding 2022-PUMCH-B-059

More Information
  • 摘要:
      目的  以美国为参照, 对中国上市的新型抗肿瘤药物现状进行分析, 探索抗肿瘤药物发展趋势, 以期为抗肿瘤药品遴选提供依据。
      方法  检索美国食品药品监督管理局和我国国家药品监督管理局数据库, 提取中国进口(美国上市)与国产自主研发的新型抗肿瘤药物的药品名称、上市时间、适应证等信息(时间截至2021年4月30日), 并计算中国上市比例。
      结果  截至2021年4月30日, 美国上市122种新型抗肿瘤药物, 共覆盖14个疾病类型。其中中国进口51种, 中国上市比例为41.80%。大分子单抗类药物中国上市比例最高(46.15%), 其次为小分子靶向药物(44.58%), 抗体药物偶联物中国上市比例最低(15.38%)。我国自2015年以来, 进口新型抗肿瘤药物数量显著增多(70.59%, 36/51), 2015—2021年中国上市比例为50.70%(36/71), 而2010—2014年中国上市比例仅为19.35%(6/31)。中国进口新型抗肿瘤药物共覆盖13个疾病类型, 适应证为中国发病率前5位瘤种的新型抗肿瘤药物的中国上市比例均值为62.15%。国内自主研发的新型抗肿瘤药物共14种, 包括大分子单抗类药物7种、小分子靶向药物7种, 占我国现有新型抗肿瘤药物的21.54%(14/65)。其中, 2015年以来上市11种(78.57%, 11/14)。国内自主研发的新型抗肿瘤药物共覆盖8个疾病类型(57.14%, 8/14)。
      结论  虽然中国新型抗肿瘤药物上市数量与美国仍有一定差距, 但基本可满足临床用药需求。2015年以来, 我国在加速审批、自主创新等方面持续改进。未来应从安全、疗效、经济、临床必要性等多角度对我国已上市药品与未上市药品进行考量, 从而为药品遴选提供依据。
    Abstract:
      Objective  To explore the trend of antitumor drugs by comparing and analyzing the novel antitumor drugs of China and US, in order to provide a basis for the selection of antitumor drugs.
      Methods  US Food and Drug Administration and China National Medical Products Administration databases were searched, and the drug name, marketing time, indication and other information were collected(as of April 30, 2021). The proportion of listed drugs in China were calculated.
      Results  As of April 30, 2021, there were 122 novel antitumor drugs marketed in the US, covering 14 disease types. Among them, 41.80% (51/122) were marketedin China. The proportion of monoclonal drugs was the highest(46.15%), followed by the small molecule targeted drugs (44.58%), and antibody-drug conjugate (15.38%). The number of novel antitumor drugs increased significantly(70.59%, 36/51) since 2015, and the proportion of listed drug in China from 2015 to 2021 was 50.70%(36/71), while that from 2010 to 2014 was only 19.35%(6/31). China has imported novel antitumor drugs covering 13 disease types. The average proportion of imported novel antitumor drugs for the top 5 tumors in China was 62.15%. A total of 14 novel antitumor drugs have been independently developed in China, including 7 monoclonal drugs and 7 small molecule targeted drugs, accounting for 21.54% (14/65) of the available novel antitumor drugs in China. Among them, 11 drugs (78.57%, 11/14) have been listed since 2015. The indications of novel antitumor drugs independently developed in China cover 8 disease types (57.14%, 8/14).
      Conclusions  There are still gaps between China and US in terms of novel antitumor drugs, but these drugs can basically meet the clinical needs in China. Since 2015, China has made progress in accelerating approval and independent innovation. We should consider the safety, effectiveness, economic and clinical necessity of the listed and unlisted drugs, so as to provide a basis for drug selection in the future.
  • 随着测序技术的发展与进步,肠道微生态与人类疾病之间的关系逐渐被发现,其在维持人体肠道上皮屏障和宿主免疫功能方面的重要作用备受关注。已有研究表明,肠道微生态与多种疾病的发病机制相关,如神经精神性疾病、自身免疫性疾病、癌症以及慢性代谢性疾病等[1-5]。近年来的研究发现,肠道微生态在血流动力学的调控中亦发挥着重要作用。本文通过回顾文献,梳理在人体生理以及重症状态下肠道微生态与血流动力学之间的关系,以期为进一步开展相关研究提供借鉴。

    人体肠道微生态由原核微生物(如细菌)、真核微生物(如真菌和原生动物)以及病毒组成[6]。肠道微生物群主要存在于大肠中,约70%分布于结肠,胃、十二指肠、空肠中较少。健康成人肠道内有超过30万亿个微生物,约是人体细胞数量的10倍,重约1~1.5 kg,其中共生和机会性细菌超过2900种[7]。在健康肠道微生物菌群中,革兰氏阴性的拟杆菌门(主要为拟杆菌或普雷沃氏菌)和革兰氏阳性的厚壁菌门(主要为梭菌和乳杆菌)占90% 以上[8],其余还包括变形菌门、放线菌门、疣微菌门等,真菌占比不足1%。它们共同构成了一个强大的“器官”,影响机体的多数生理功能[9]

    一方面,肠道微生物可降解食物中难消化的多糖,并将其分解成各种代谢物,如短链脂肪酸(short chain fatty acids,SCFAs)。这些SCFAs不仅能在肠道中被吸收,为肠上皮细胞提供能量,维持肠上皮黏膜屏障完整,同时又是有效的抗炎化合物,可通过抑制核因子κB(nuclear factor-κB,NF-κB)减少细胞因子的产生[10-11]。此外,肠道微生物的代谢物可被结肠黏膜吸收,并可通过内分泌方式或胆汁酸的代谢过程发挥功能,影响机体生理过程[12]。另一方面,肠道微生物有助于合成人体维生素K、维生素B12、核黄素、硫胺素、叶酸和必需氨基酸,同时,肠道微生物菌群可通过共生菌和病原菌之间的竞争作用,在防御消化道感染以及建立局部免疫防御方面发挥作用[13]

    肠黏膜是外部环境和宿主内部环境之间的屏障,由肠上皮细胞紧密连接组成。生理状态下,肠上皮细胞通过Toll样受体系统参与识别肠道内微生物相关分子模式,释放细胞因子、分泌黏液、IgA、抗微生物肽以及SCFAs激活Treg细胞等,对肠道内的微生物群产生免疫耐受[14-16],维持肠道微生态与机体处于平衡状态。同时,微生物群可通过氧化三甲胺(trimethyla-mine oxide,TMAO)、SCFAs及其受体对血流动力学发挥调控作用。

    肠道微生物从肉类、鱼类和鸡蛋等食物的胆碱、卵磷脂和肉碱中,通过多种微生物酶复合体分解产生三甲胺并进入门脉循环,在门脉循环中,三甲胺被肝脏黄素单加氧酶氧化为TMAO[17]。TMAO大部分在肾脏中被清除,其余部分在肠道中被还原为三甲胺。TMAO可存在于心脏、肾脏或其他组织中并参与多种生化过程,如激活血小板聚集、促进泡沫细胞形成、诱导炎症反应等[18-20],参与机体血流动力学调控。首先,尿液和血浆中TMAO浓度升高是慢性肾功能衰竭的标志[21-22],血浆中TMAO水平升高可影响肾素-血管紧张素系统,并导致肾间质纤维化和功能障碍,促进钠和水潴留,引起血压升高[23]。其次,TMAO可激活和促进机体炎症反应,给予小鼠喂食TMAO可直接激活其炎症通路,如NF-κB信号通路,导致血管平滑肌细胞发生炎症反应,激活的炎症反应能够诱导NOD样受体热蛋白结构域相关蛋白3(NOD-like receptor thermal protein domain associated protein 3, NLRP3)形成炎症小体,产生白细胞介素(interleukin,IL)-1β和IL-18[24],进一步促进内皮细胞炎症,引起线粒体活性氧、硫氧还原蛋白相互作用蛋白的产生和溶酶体失稳态,进而使内皮细胞的增殖和迁移受损,最终导致血管收缩,血压升高。此外,TMAO升高能够引起心力衰竭。一方面,TMAO可导致心肌肥厚和纤维化[25]; 另一方面,TMAO的增加可通过丙酮酸和脂肪酸氧化,影响心脏能量代谢和线粒体功能,最终导致心室重塑和心力衰竭的发生[26]。最后,TMAO可通过NF-κB、MAPK/NF-κB等途径,诱导单核细胞粘附内皮细胞,TNF-α、IL-6、C-反应蛋白表达增加,促进血管炎症,导致毛细血管渗漏,引起血压下降,导致血流动力学不稳定[27]

    肠道厌氧微生物群发酵食物中的膳食纤维可产生SCFAs等代谢物,这有助于维持肠黏膜屏障的完整性并促进宿主的免疫反应[28]。SCFAs是结肠上皮细胞的主要能量来源,有助于维持功能性细胞间连接。同时,SCFAs通过调控辅助性T细胞、调节性T细胞等细胞抗体和细胞因子的产生,在肠道免疫中发挥作用,这种作用主要为抗炎作用。SCFAs还可诱导上皮细胞中的细胞保护蛋白,在应激条件下维持细胞活力,同时,SCFAs能够通过抑制组蛋白去乙酰化酶活性,调节蛋白的乙酰化修饰,减少免疫细胞分泌促炎因子,维持肠道免疫稳态[29-30]

    SCFAs是肠道微生物代谢产物之一,主要为乙酸盐、丙酸盐和丁酸盐[31]。近年来发现多种SCFAs受体和血压调控机制有关,主要包括嗅觉受体78(Olfr78)、G蛋白偶联受体41(Gpr41)、G蛋白偶联受体43(Gpr43)。

    Olfr78对乙酸盐和丙酸盐较为敏感[32]。其存在于多种已知对血压调节具有重要作用的阻力血管中,如肾入球小动脉。众所周知,血液通过入球小动脉进入肾小球进行过滤,该小动脉是肾素(肾素-血管紧张素-醛固酮系统中的初始调控因子)储存的位置。肾素-血管紧张素-醛固酮系统是调控血压的重要机制,入球小动脉通过储存和分泌肾素在血压控制中起着重要作用。Olfr78分布于阻力血管和入球小动脉,SCFAs可促使肾素分泌和血管收缩,从而在组织血流调节和液体调节中发挥重要作用[32]

    Gpr41和Gpr43对乙酸盐和丙酸盐亦较为敏感[33-35],可在多种组织中表达。例如,内皮细胞中的Gpr41和Gpr43,能够舒张血管内皮细胞,从而导致血压下降[36]。Gpr43可对肠道微生物群产生的SCFAs作出反应,参与多种病理生理过程,如炎症反应[33, 35]。研究发现,在血浆丙酸盐的基础水平(0.1~1.0 mmol/L),SCFAs主要通过Gpr41、Gpr43作用于内皮细胞,促进血管舒张,发挥降压作用,当丙酸盐浓度>1.0 mmol/L时,SCFAs主要通过Olfr78发挥升压作用[33-34, 37]

    重症患者由于休克、炎症反应、免疫功能受损、饮食、药物改变、肠道活动能力下降、肠道灌注不足等原因导致肠道菌群失调[38],肠黏膜结构破坏以及菌群易位。肠道微生态紊乱可减少SCFAs的生成,同时使TMAO浓度增加,加重血管炎症反应,影响血流动力学稳定[39-40]。而肠道菌群易位不仅可引起机体炎症反应,造成血管通透性增加、液体渗漏以及血流动力学不稳定,还会直接影响心肌收缩功能。

    首先,重症患者由于电解质波动、营养结构/方式的改变以及镇静剂的频繁使用,引起肠道运动能力下降、肠上皮完整性降低,导致“有益”厌氧菌科(如毛螺菌科和瘤胃球菌科)减少或缺失,进一步损害肠上皮屏障功能,引起机会致病菌过度生长和易位[41]

    其次,ICU常用的抗生素、非甾体抗炎药、β受体阻滞剂或质子泵抑制剂等药物可直接影响肠道微生物群的组成[42-44]。研究证实,重症患者共生肠道细菌(如厚壁菌或拟杆菌)减少以及潜在致病细菌(如变形杆菌、肠球菌属、艰难梭菌属、葡萄球菌属等)增加[28]。重症患者肠道菌群易位可导致SCFAs浓度降低,还可直接刺激机体免疫系统,激活内皮细胞、炎症细胞等效应细胞,进一步释放细胞因子、前列腺素I2、氧自由基、蛋白酶、血栓素A2等,引起炎症反应[45-46]。炎症因子升高初期,血管内皮细胞结构破坏,细胞功能出现障碍,外周血管阻力增加,血管平滑肌细胞大量增殖,诱发血管收缩,引起血压升高。随着炎症反应的增强,出现“瀑布”样炎症反应,诱发毛细血管渗漏综合征,患者出现血压下降甚至休克[47]。同时,机体炎症介质释放,损伤心肌细胞,血管加压素、血管紧张素等激素的缩血管作用降低,血管呈现麻痹状态,加剧血流动力学的紊乱[48]

    再次,肠道菌群紊乱引起血液中TMAO水平升高,TMAO水平升高后,可通过上述生理调控途径,导致血流动力学不稳定。同时,TMAO能够诱导组织因子的表达,促进血栓形成和血管炎症发生发展[49-50],进一步导致血流动力学不稳定。

    此外,肠道菌群紊乱可影响心肌收缩力[51]。肠道菌群紊乱诱发的炎症反应会释放肿瘤坏死因子和IL-1β等炎症因子,这些炎症因子能够直接抑制心肌细胞。细胞因子还能够激活诱导型一氧化氮合酶,其过度表达可引起血管扩张,导致低血压[52]。强烈的炎症反应还会引起β-肾上腺素能受体在全身和心肌中下调,导致血管和心肌对儿茶酚胺的反应性均降低[53]。肠道菌群易位,内毒素释放入血还会引起线粒体DNA损伤,线粒体内钙离子水平升高和自由基增多,诱导线粒体通透性转换孔开放,导致膜电位下降,ATP合成障碍,钙离子超载,细胞器肿胀并最终破裂,引起心脏能量代谢障碍[54]

    血流动力学不稳定在重症患者中较为常见,重症患者血流动力学改变,全身血流重新分配,肠道缺血再灌注损伤易造成肠上皮屏障破坏、肠道菌群紊乱及免疫功能失衡,最终导致肠源性菌群易位,引起全身炎症反应和感染发生。而休克患者由于机体的代偿机制,休克早期内脏血管选择性收缩以保证重要器官的灌注,此时可直接引起胃肠道黏膜缺血缺氧,导致肠上皮坏死、脱落,肠道黏膜屏障功能受损,通透性增高,肠道菌群失调和易位[55]。动物实验表明,大鼠发生肠道缺血或缺血再灌注损伤后,回肠菌群发生了明显改变,主要表现为有害菌如大肠埃希菌等明显增加,而益生菌如乳酸杆菌等明显减少,提示肠道缺血缺氧性损伤可引起肠道菌群改变[56]。目前已有临床研究表明,重症患者因心力衰竭引起的血流动力学变化,可导致肠道的形态、通透性、功能以及肠道菌群的生长和组成发生改变,进而破坏肠道屏障,出现微生物或内毒素移位,加剧全身炎症反应[57-58]。由于内脏灌注不足而导致的所有病理生理改变,均可能导致肠道菌群失调[59]

    生理状态下,肠道微生态在维持人体血流动力学稳定方面具有重要作用。重症患者常出现肠道微生态紊乱,但临床上常忽视这一问题带来的后果。肠道微生态紊乱从多个方面影响着机体血流动力学的稳定,同时,血流动力学不稳定又可进一步加剧肠道微生态紊乱。虽然经过学者多年努力,已发现肠道微生态和血流动力学之间的一些规律,但目前仍不能完全明确二者之间的具体作用机制。未来,随着高通量测序技术的应用和普及,相信对肠道微生态在人体血流动力学中作用机制的认识会越来越深入。

    作者贡献:孙雯娟负责数据整理、论文撰写;张波指导研究设计,负责论文审阅及修订。
    利益冲突:所有作者均声明不存在利益冲突
  • 表  1   中国不同时间段进口的新型抗肿瘤药物占比及上市时间差

    上市时间 美国上市(种) 中国进口(种) 上市时间差平均值(年) 中国上市比例(%)
    小分子靶向药物 大分子单抗类药物 抗体药物偶联物 总数 小分子靶向药物 大分子单抗类药物 抗体药物偶联物 总数 小分子靶向药物 大分子单抗类药物 抗体药物偶联物 总数
    2000年以前 0 2 0 2 0 0 0 0 - - 0 - 0
    2000—2004年 4 2 2 8 0 1 0 1 3.0 0 50.00 0 12.50
    2005—2009年 9 1 0 10 6 2 0 8 3.3 66.67 200 - 80.00
    2010—2014年 21 8 2 31 5 1 0 6 5.5 23.81 12.50 0 19.35
    2015—2019年 35 9 5 49 18 6 0 24 4.6 51.43 66.67 0 48.98
    2020—2021年 14 4 4 22 8 2 2 12 4.2 57.14 50.00 50.00 54.55
    合计 83 26 13 122 37 12 2 51 4.1 44.58 46.15 15.38 41.80
    “-”表示无法计算
    下载: 导出CSV

    表  2   美国上市的新型抗肿瘤药物中国进口情况[统计时间:2021-04-30]

    适应证及药物数量 中国上市药品 中国未上市药品 中国上市比例(%) 中国上市比例排序
    血液肿瘤(n=45) 利妥昔单抗 tafasitamab 37.78 12
    达雷妥尤单抗 acalabrutinib
    维布妥昔单抗 obinutuzumab
    贝林妥欧单抗 isatuximab
    泽布替尼 bosutinib monohydrate
    达沙替尼 elotuzumab
    维奈克拉 carfilzomib
    芦可替尼 copanlisib
    吉瑞替尼 duvelisib
    伊布替尼 selinexor
    伊马替尼 umbralisib tosylate
    来那度胺 enasidenib mesylate
    普乐沙福 glasdegib maleate
    尼洛替尼 idelalisib
    克唑替尼* ivosidenib
    纳武利尤单抗* pomalidomide
    帕博利珠单抗* pentostatin
    midostaurin
    panobinostat lactate
    romidepsin
    ponatinib hydrochloride
    cedazuridine/decitabine
    belantamab mafodotin
    ibritumomab tiuxetan
    gemtuzumab ozogamicin
    polatuzumab vedotin
    moxetumomab pasudotox
    inotuzumab ozogamicin
    呼吸系统肿瘤(n=31) 吉非替尼 trilaciclib dihydrochloride 58.06 8
    厄洛替尼 necitumumab
    阿法替尼 tepotinib
    达可替尼 selpercatinib
    奥希替尼 brigatinib
    克唑替尼 lurbinectedin
    塞瑞替尼 capmatinib
    阿来替尼 lorlatinib
    普拉替尼 entrectinib
    达拉非尼* cemiplimab
    曲美替尼* ipilimumab
    依维莫司 ramucirumab
    贝伐珠单抗 larotrectinib
    西妥昔单抗
    帕博利珠单抗
    纳武利尤单抗
    度伐利尤单抗
    阿替利珠单抗
    乳腺癌(n=17) 阿贝西利 alpelisib 52.94 9
    哌柏西利 margetuximab
    马来酸奈拉替尼 tucatinib
    拉帕替尼 ribociclib succinate
    帕妥珠单抗注射液 talazoparib tosylate
    恩美曲妥珠单抗 sacituzumab govitecan
    曲妥珠单抗 fam-trastuzumab deruxtecan
    阿替利珠单抗* pertuzumab/trastuzumab/hyaluronidase
    帕博利珠单抗*
    泌尿系统肿瘤(n=16) 依维莫司 temsirolimus 62.50 6
    培唑帕尼 tivozanib
    阿昔替尼 erdafitinib
    索拉非尼 cabozantinib
    舒尼替尼 avelumab
    仑伐替尼* enfortumab vedotin
    阿替利珠单抗*
    贝伐珠单抗*
    纳武利尤单抗*
    帕博利珠单抗*
    皮肤肿瘤(n=16) 维莫非尼 sonidegib 37.50 13
    曲美替尼 vorinostat
    达拉非尼 vismodegib
    帕博利珠单抗 cobimetinib
    纳武利尤单抗* binimetinib
    阿替利珠单抗* encorafenib
    romidepsin
    cemiplimab
    avelumab
    ipilimumab
    消化系统肿瘤(n=12) 瑞戈非尼 panitumumab 58.33 7
    贝伐珠单抗 encorafenib
    曲妥珠单抗 ramucirumab
    西妥昔单抗 ipilimumab
    帕博利珠单抗 larotrectinib
    纳武利尤单抗
    厄洛替尼*
    肝胆系统肿瘤(n=10) 仑伐替尼 pemigatinib 70.00 4
    索拉非尼 ipilimumab
    瑞戈非尼 ramucirumab
    贝伐珠单抗*
    纳武利尤单抗*
    帕博利珠单抗*
    阿替利珠单抗*
    妇科肿瘤(n=7) 奥拉帕利 rucaparib camsylate 71.43 3
    尼拉帕利 larotrectinib
    仑伐替尼*
    贝伐珠单抗*
    帕博利珠单抗*
    骨与软组织肉瘤(n=6) 依维莫司 olaratumab 50.00 10
    地舒单抗 tazemetostat hydrobromide
    培唑帕尼* pexidartinib
    内分泌系统肿瘤(n=6) 索拉非尼 vandetanib 66.67 5
    仑伐替尼* larotrectinib
    曲美替尼*
    达拉非尼
    神经内分泌肿瘤(n=5) 依维莫司 100 1
    瑞戈非尼
    瑞派替尼
    舒尼替尼
    阿伐替尼
    中枢神经系统肿瘤(n=4) 依维莫司 naxitamab 50.00 10
    贝伐珠单抗* dinutuximab
    头颈部肿瘤(n=3) 纳武利尤单抗 100 1
    西妥昔单抗*
    帕博利珠单抗
    生殖系统肿瘤(n=2) capromab pendetide 0 14
    rucaparib camsylate
    *国内已上市但未批准相应适应证的药品
    下载: 导出CSV

    表  3   中国自主研发的新型抗肿瘤药物上市情况

    适应证及药品数量 药品名称 NMPA批准上市时间(年)
    呼吸系统肿瘤(n=7) 埃克替尼 2014
    阿美替尼 2020
    重组人血管内皮抑制素 2006
    安罗替尼 2018
    卡瑞利珠单抗 2019
    信迪利单抗 2018
    替雷利珠单抗 2019
    血液肿瘤(n=4) 西达本胺 2014
    信迪利单抗 2018
    卡瑞利珠单抗 2019
    替雷利珠单抗 2019
    消化系统肿瘤(n=4) 卡瑞利珠单抗 2019
    信迪利单抗 2018
    阿帕替尼 2019
    呋喹替尼 2018
    乳腺癌(n=3) 伊尼妥单抗 2020
    吡咯替尼 2018
    西达本胺 2014
    泌尿系统肿瘤(n=3) 安罗替尼 2018
    特瑞普利单抗 2020
    替雷利珠单抗 2019
    头颈部肿瘤(n=3) 尼妥珠单抗 2017
    卡瑞利珠单抗 2019
    特瑞普利单抗 2020
    皮肤肿瘤(n=1) 特瑞普利单抗 2020
    骨与软组织肉瘤(n=1) 安罗替尼 2018
    NMPA:国家药品监督管理局
    下载: 导出CSV

    表  4   PD-1单抗类药物适应证比较

    类别 免疫检查点抑制剂 中国NMPA批准的适应证* 美国FDA批准的适应证#
    中国自主研发 信迪利单抗 霍奇金淋巴瘤、非小细胞肺癌、肝细胞癌 未上市
    替雷利珠单抗 霍奇金淋巴瘤、尿路上皮癌、非小细胞肺癌 未上市
    卡瑞利珠单抗 霍奇金淋巴瘤、肝细胞癌、非小细胞肺癌、食管鳞癌、鼻咽癌 未上市
    特瑞普利单抗 黑色素瘤、鼻咽癌、尿路上皮癌 未上市
    中国进口 帕博利珠单抗 黑色素瘤、非小细胞肺癌、食管癌、头颈部鳞状细胞癌、结直肠癌 黑色素瘤、非小细胞肺癌、头颈部鳞癌、霍奇金淋巴瘤、细胞淋巴瘤、尿路上皮癌、微卫星不稳定肿瘤、微卫星不稳定的结直肠癌、胃癌、食管癌、宫颈癌、肝癌、默克尔细胞癌、肾上皮细胞癌、子宫内膜癌、高肿瘤突变负荷肿瘤、皮肤鳞状细胞癌、三阴性乳腺癌
    纳武利尤单抗 非小细胞肺癌、头颈部鳞状细胞癌、胃腺癌及胃与食管交界处腺癌、恶性胸膜间皮瘤 不可切除的黑色素瘤、黑色素瘤辅助治疗、非小细胞肺癌、恶性胸膜间皮瘤、肾细胞癌、霍奇金淋巴瘤、头颈部鳞癌、尿路上皮癌、微卫星不稳定的结直肠癌、肝细胞癌、食管鳞状细胞癌、胃癌及胃与食管癌交界处肿瘤
    *数据来源于中国NMPA说明书;#数据来源于美国FDA说明书;PD-1:程序性死亡[蛋白]-1;NMPA:同表 3;FDA:食品药品监督管理局
    下载: 导出CSV
  • [1]

    WHO. Data visualization tools for exploring the global cancer burden in 2020[EB/OL]. (2020-01-01)[2021-06-16]. https://gco.iarc.fr/today/home.

    [2] 孙可欣, 郑荣寿, 张思维, 等. 2015年中国分地区恶性肿瘤发病和死亡分析[J]. 中国肿瘤, 2019, 2: 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHLU201901001.htm
    [3] 中华人民共和国国家卫生健康委员会. 关于印发新型抗肿瘤药物临床应用指导原则(2018年版)的通知[EB/OL]. (2018-09-21)[2021-06-08]. http://www.nhc.gov.cn.
    [4]

    American Jonit Committee on Cancer. Cancer Staging Manual Eighth Edition[M]. Springer Nature, 2016.

    [5]

    WHO. Global Cancer Observatary[EB/OL]. (2020-01-01)[2021-06-06]. https://gco.iarc.fr/.

    [6] 国家药品监督管理局. 关于解决药品注册申请积压实行优先审评审批的意见[EB/OL]. (2016-02-26)[2021-06-16]. https://www.nmpa.gov.cn.
    [7] 国家药品监督管理局. 关于临床急需境外新药审评审批相关事宜的公告[EB/OL]. (2018-10-23)[2021-06-16]. https://www.nmpa.gov.cn.
    [8]

    Gauzy-Lazo L, Sassoon I, Brun MP. Advances in Antibody-Drug Conjugate Design: Current Clinical Landscape and Future Innovations[J]. SLAS Discov, 2020, 25: 843-868. DOI: 10.1177/2472555220912955

    [9] 于丝雨, 刘晓东, 刘李. 抗体药物偶联物药动学研究进展[J]. 药学进展, 2021, 45: 188-195. https://www.cnki.com.cn/Article/CJFDTOTAL-YXJZ202103006.htm
    [10]

    Von Minckwitz G, Huang CS, Mano MS, et al. Trastu-zumab Emtansine for Residual Invasive HER2-Positive Breast Cancer[J]. N Engl J Med, 2019, 380: 617-628. DOI: 10.1056/NEJMoa1814017

    [11]

    Denevault-Sabourin C, Joubert N, Beck A, et al. Antibody-Drug Conjugates: The Last Decade[J]. Pharmaceuticals, 2020, 13: 245. DOI: 10.3390/ph13090245

    [12]

    Theocharopoulos C, Lialios PP, Gogas H, et al. An over-view of antibody-drug conjugates in oncological practice[J]. Ther Adv Med Oncol, 2020, 12: 1758835920962997.

    [13]

    National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines): Chronic lymphocytic leukemia/Small lymphocytic leukemia[EB/OL]. (2021-04-29)[2021-06-06]. https://www.nccn.org/professionals/default.aspx.

    [14]

    Awan FT, Schuh A, Brown JR, et al. Acalabrutinib mono-therapy in patients with chronic lymphocytic leukemia who are intolerant to ibrutinib[J]. Blood Adv, 2019, 3: 1553-1562. DOI: 10.1182/bloodadvances.2018030007

    [15]

    Shah A, Barrientos JC. Oral PI3K-δ, γ Inhibitor for the Management of People with Chronic Lymphocytic Leukemia and Small Lymphocytic Lymphoma: A Narrative Review on Duvelisib[J]. Onco Targets Ther, 2021, 14: 2109-2119. DOI: 10.2147/OTT.S189032

    [16]

    National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines): Chronic myeloid leukemia[EB/OL]. (2021-01-13)[2021-06-06]. https://www.nccn.org/professionals/default.aspx.

    [17]

    Cortes J, Lang F. Third-line therapy for chronic myeloid leukemia: current status and future directions[J]. J Hematol Oncol, 2021, 14: 2-18. DOI: 10.1186/s13045-020-01026-6

    [18]

    Issa GC, DiNardo CD. Acute myeloid leukemia with IDH1 and IDH2 mutations: 2021 treatment algorithm[J]. Blood Cancer J, 2021, 11: 2-7. DOI: 10.1038/s41408-020-00404-0

    [19]

    Paik PK, Felip E, Veillon R, et al. Tepotinib in Non-Small-Cell Lung Cancer with MET Exon 14 Skipping Mutations[J]. N Engl J Med, 2020, 383: 931-943. DOI: 10.1056/NEJMoa2004407

    [20]

    Wolf J, Seto T, Han J Y, et al. Capmatinib in MET Exon 14-Mutated or MET-Amplified Non-Small-Cell Lung Cancer[J]. N Engl J Med, 2020, 383: 944-957. DOI: 10.1056/NEJMoa2002787

    [21]

    National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines): Non-small cell lung cancer[EB/OL]. (2021-03-03)[2021-06-26]. https://www.nccn.org/professionals/default.aspx.

    [22]

    Drilon A, Clark JW, Weiss J, et al. Antitumor activity of crizotinib in lung cancers harboring a MET exon 14 alteration[J]. Nat Med, 2020, 26: 47-51. DOI: 10.1038/s41591-019-0716-8

    [23]

    Camidge DR, Kim HR, Ahn MJ, et al. Brigatinib versus Crizotinib in ALK-Positive Non-Small-Cell Lung Cancer[J]. N Engl J Med, 2018, 379: 2027-2039. DOI: 10.1056/NEJMoa1810171

    [24]

    Besse B, Solomon BJ, Felip E, et al. Lorlatinib in patients (Pts) with previously treated ALK+ advanced non-small cell lung cancer (NSCLC): Updated efficacy and safety[J]. J Clin Oncol, 2018, 36: 9032-9032. DOI: 10.1200/JCO.2018.36.15_suppl.9032

    [25]

    Murthy RK, Loi S, Okines A, et al. Tucatinib, trastuzumab and capecitabine for HER2positive metastatic breast cancer[J]. N Engl J Med, 2019, 382: 597609.

    [26]

    Rugo HS, Im SA, Cardoso F, et al. Efficacy of Marge-tuximab vs Trastuzumab in Patients With Pretreated ERBB2-Positive Advanced Breast Cancer: A Phase 3 Randomized Clinical Trial[J]. JAMA Oncol, 2021, 7: 573-584. DOI: 10.1001/jamaoncol.2020.7932

    [27]

    National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines): Breast cancer[EB/OL]. (2021-04-28)[2021-06-26]. https://www.nccn.org/professionals/default.aspx.

    [28]

    André F, Ciruelos E, Rubovszky G, et al. Alpelisib for PIK3CA-Mutated, Hormone Receptor-Positive Advanced Breast Cancer[J]. N Engl J Med, 2019, 380: 1929-1940. DOI: 10.1056/NEJMoa1813904

    [29] 赵秋玲, 杨琳, 谢瑞祥. 9种获批上市的抗PD-1/PD-L1单抗药物的特征综述[J]. 中国药房, 2020, 31: 2294-2299. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYA202018022.htm
    [30]

    Hong Y, Feng Y, Sun H, et al. Tislelizumab uniquely binds to the CC' loop of PD-1 with slow-dissociated rate and complete PD-L1 blockage[J]. FEBS Open Bio, 2021, 11: 782-792. DOI: 10.1002/2211-5463.13102

  • 期刊类型引用(4)

    1. 黄念文,李海松,王彬,王伊光,冯隽龙,孙龙吉,王继升. 基于肠道菌群探讨活血化瘀法治疗勃起功能障碍. 中医学报. 2024(05): 924-928 . 百度学术
    2. 刘喆雯,陈其华. 基于肠道菌群从“土郁夺之”论治慢性前列腺炎. 中国中医药信息杂志. 2024(05): 15-20 . 百度学术
    3. 陈瑞泽,李瑞仕,郭峰,王泽坤. 基于肠道微生态探讨推拿治疗孤独症谱系障碍的思路. 江西中医药. 2024(09): 76-80 . 百度学术
    4. 黄念文,王彬,王继升,赵琦,冯隽龙,孙龙吉,李海松. 论肠道菌群是补肾活血法治疗慢性前列腺炎的重要靶点. 湖南中医药大学学报. 2023(03): 565-570 . 百度学术

    其他类型引用(1)

表(4)
计量
  • 文章访问数:  4664
  • HTML全文浏览量:  156
  • PDF下载量:  159
  • 被引次数: 5
出版历程
  • 收稿日期:  2021-07-08
  • 录用日期:  2021-09-12
  • 刊出日期:  2022-11-29

目录

/

返回文章
返回
x 关闭 永久关闭