肌骨共生相关信号通路研究进展

刘晏东, 邓强, 张彦军, 李中锋, 彭冉东, 郭铁峰, 王雨榕, 陈博

刘晏东, 邓强, 张彦军, 李中锋, 彭冉东, 郭铁峰, 王雨榕, 陈博. 肌骨共生相关信号通路研究进展[J]. 协和医学杂志, 2024, 15(1): 147-152. DOI: 10.12290/xhyxzz.2023-0277
引用本文: 刘晏东, 邓强, 张彦军, 李中锋, 彭冉东, 郭铁峰, 王雨榕, 陈博. 肌骨共生相关信号通路研究进展[J]. 协和医学杂志, 2024, 15(1): 147-152. DOI: 10.12290/xhyxzz.2023-0277
LIU Yandong, DENG Qiang, ZHANG Yanjun, LI Zhongfeng, PENG Randong, GUO Tiefeng, WANG Yurong, CHEN Bo. Research Progress on Emerging Signaling Pathways Related to Muscle Bone Symbiosis[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 147-152. DOI: 10.12290/xhyxzz.2023-0277
Citation: LIU Yandong, DENG Qiang, ZHANG Yanjun, LI Zhongfeng, PENG Randong, GUO Tiefeng, WANG Yurong, CHEN Bo. Research Progress on Emerging Signaling Pathways Related to Muscle Bone Symbiosis[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 147-152. DOI: 10.12290/xhyxzz.2023-0277

肌骨共生相关信号通路研究进展

基金项目: 

国家中医药管理局国家中医临床研究基地业务建设科研专项 JDZX2015039

甘肃省联合基金 23JRRA1534

兰州市科技计划 2022-3-30

详细信息
    通讯作者:

    邓强, E-mail: 2959183478@qq.com

  • 中图分类号: R589;R592

Research Progress on Emerging Signaling Pathways Related to Muscle Bone Symbiosis

Funds: 

Special Project on Scientific Research for the Business Construction of National TCM Clinical Research Base of the State Administration of Traditional Chinese Medicine JDZX2015039

Gansu Province Joint Fund Project 23JRRA1534

Lanzhou Science and Technology Plan Project 2022-3-30

More Information
  • 摘要: 骨质疏松症是一种以骨量降低、骨组织微结构损坏、骨脆性增加、易发生骨折为特征的全身代谢性骨病,而肌少症是以进行性全身肌量减少和功能减退为主要特征的综合征。基于二者共同的病理生理机制及密切相关性,逐渐衍生出“肌少-骨质疏松症”这一概念,以描述肌肉与骨骼同时发生衰减的现象。信号通路作为肌肉与骨骼之间重要的信号传递途径,如发生异常,则会导致肌少-骨质疏松症的发生。因此,本文就Hedgehog、Hippo、mTOR和MAPK等成骨与成肌相关信号通路进行综述,以期为肌少-骨质疏松症的靶向治疗提供新思路。
    Abstract: Osteoporosis is a systemic metabolic bone disease characterized by decreased bone mass, damage to bone tissue microstructure, increased bone fragility, and susceptibility to fractures, while sarcopenia is a syndrome characterized by progressive reduction in overall muscle mass and functional decline. Based on the common pathophysiological mechanism and close correlation between the two, the concept of "osteosarcopenia" has gradually emerged to describe the simultaneous attenuation of muscles and bones. Signaling pathways serve as important signal transmission channels between muscles and bones, and if abnormal, they can lead to osteosarcopenia. The aim of this article, therefore, is to review the signaling pathways related to osteogenesis and myogenesis, such as Hedgehog, Hippo, mTOR, MAPK, in order to provide new ideas for targeted treatment of osteosarcopenia.
  • 近年来,关于如何界定缓和医疗照护对象的讨论正在悄然展开,并已引起多个领域(包括但不限于临床专业、政策制定、医疗体制改革、法律伦理和投资实业等)专家的关注。本文从推广生前预嘱(living will)的角度就这一问题展开讨论。

    北京生前预嘱推广协会是于2013年注册成立的公益性社团组织。生前预嘱是指人们在健康或意识清楚时事先签署的指示性文件,阐明当其在不可治愈的伤病末期或临终时要或不要哪种医疗照护[1]。目前,世界上所有提供缓和医疗服务的国家和地区,均将生前预嘱以及具有表达个人意愿功能的相似文件作为开展此项医疗服务的合法性前提[2]。缓和医疗相关国家政策、临床实践与理论的发展,则是生前预嘱推广的必要条件。因此,本协会将推广生前预嘱和缓和医疗作为并驾齐驱的两项日常工作。

    2010—2016年,本协会委托多名两会代表(胡定旭、凌峰、陶斯亮、顾晋等)连续数年提案,在中国现有法律环境下推广生前预嘱,以期建立政府指导下全方位分层次的缓和医疗服务。2015年,本协会受邀参加由时任全国政协主席俞正声支持、全国政协教科文卫体委员会开展的全国调研,该项工作围绕如何“推动安宁疗护发展”展开,对多地进行了为期8个月的走访和深度观察。2016年4月,俞正声主持并召开全国政协第49次双周协商座谈会,围绕“推进安宁疗护工作”建言献策。时任协会总干事罗峪平和香港医管局局长、协会专委会主席胡定旭参加会议并发言[3]。在调研和会议准备的过程中,我们竭力主张中国现代缓和医疗应从一开始就把照护对象尽量扩大化,主要依据是缓和医疗的定义一直在变化。

    最广为人知和接受的缓和医疗定义由世界卫生组织(World Health Organization,WHO) 于2002年制定:缓和医疗是一种提供给患有危及生命疾病的患者和家庭的,旨在提高其生活质量及应对危机能力的系统方法;通过对痛苦和疼痛的早期识别,以严谨的评估和有效管理,满足患者及家庭的所有(包括心理和精神)需求[4]。2020年WHO发布了该定义的修订版,简化了语言表述,之前难以翻译成各国语言的措辞也得到纠正:缓和医疗是一种改善患有危及生命疾病的患者(成人和儿童)及其家人生活质量的方法;其通过早期识别,正确评估、治疗疼痛和其他身体、心理、精神问题以预防和减轻痛苦[5]。更新版定义列出了可能需要缓和医疗的最常见病症,但这些常见病症并无一份详尽的清单,疾病本身的诊断也并非获得缓和医疗服务的标准,因此对于缓和医疗照护对象的界定仍存在争议。

    与此同时,国际安宁缓和医疗协会(International Association for Hospice & Palliative Care,IAHPC)提出了更具专业视角的缓和医疗新定义:缓和医疗是对因严重疾病而遭受严重健康损害的所有年龄段的个人,尤其是对生命终末期患者,所进行的积极全面的照护。该定义旨在提高个人及其家属和照护者的生活质量[6]。尽管这一定义与WHO的定义存在差异,但优先考虑舒适、尊严和共同决策,界定的目标人群为“患有严重疾病的人,不论年龄大小”,并不强调疾病的死亡率,而仅强调其严重性,建议从疾病一开始就实施缓和医疗,此表述符合多数人对缓和医疗的期盼,其一经发布即得到全球180个安宁疗护与缓和医疗组织和学术中心的支持[7]

    通过与调研专家团进行充分讨论,最终大家一致认为,从国家目前医疗体制的实际情况出发,对以癌症为主的终末期患者进行照护(后来被命名为“安宁疗护”)开始,可更快地使国家职能部门找到推广的抓手,具有更好的操作性,也更符合我国国情。而医保支付系统和商业保险等各相关领域在逐步积累数据的过程中,也能够留出充足的计算和决策空间,从而促使缓和医疗理念以更合理的速度长入复杂社会的“肌体”。随后,国家卫生健康委正式发布了安宁疗护标准和管理规范,并陆续推出三批安宁疗护试点城市。自此,安宁疗护作为现代缓和医疗的一部分开始快速发展,使更多人在了解安宁疗护的同时也对缓和医疗理念有了深入了解。从目前所取得的成果来看,这一“小切口”的决策更趋合理,使得缓和医疗的推广更易落实和操作。

    全球老龄化日益加剧、感染性疾病大流行以及战争和气候变化带来的人道灾难,均将继续影响缓和医疗照护对象的界定。各国政府和各类组织将依据自身所处的不同环境作出不同决策,并不断修正和完善。不仅如此,生前预嘱的概念和推广方式也在经历一轮又一轮的更新和变化。

    预立照护计划(advance care planning,ACP)是针对原有生前预嘱概念的迭代性文件。完整的ACP一般包括充分的个人意愿表达、指定的医疗代理人和可被执行的临床医嘱三部分,旨在通过患者、家属(或医疗代理人)和临床医生的充分协商,对诸如临终是否使用生命支持系统、是否充分镇痛等作出最大限度优化患者利益的共同决策。其优点在于可最大限度保障在长期照护机构、养老院、护理院、紧急医疗部门和医院各科室之间完整信息的传送和使用。目前,此类由医护人员主张形成的具有专业特点的措施,已经展现出良好的效果。2019年,由美国政府购买服务的美国生前预嘱注册中心(U.S. Living Will Registry)也因此改名为美国预立照护计划注册中心(U.S. Advance Care Plan Registry)[1]

    鉴于此,未来本协会的生前预嘱推广工作将增添新的重要内容——积极推动在现有法律环境下,在医政医管职权范围内,将统一制作的ACP文本放入住院病案首页,纳入病案级管理。这不仅有利于缓和医疗照护全过程的正确对接,还能够指导临床医护人员深入了解和掌握缓和医疗的基本概念和技能。标准ACP制作流程见图 1

    图  1  标准ACP制作流程[8]
    ACP(advance care planning): 预立照护计划
    Figure  1.  Standard Production Process of ACP

    缓和医疗的本质是对人的尊重,是在科技时代人们对生命本质重新认识的产物,而缓和医疗照护对象的界定亦无可争议地会随着国家经济和文明水平的发展而不断被修正和完善。北京生前预嘱推广协会作为推广生前预嘱和“尊严死”理念的社会组织,秉承“推广生前预嘱,让更多人知道,按照本人意愿,尽量以自然和有尊严的方式离世,是对生命的珍惜和热爱”的使命,殷切而充满信心地期待安宁缓和医疗在不久的将来,能够成为人人享有的基本权利。

    作者贡献:刘晏东、张彦军负责论文撰写;邓强负责论文指导;李中锋、彭冉东负责论文构思;郭铁峰、王雨榕、陈博负责论文修订。
    利益冲突:所有作者均声明不存在利益冲突
  • [1]

    Laskou F, Patel H P, Cooper C, et al. A pas de deux of osteoporosis and sarcopenia: osteosarcopenia[J]. Climacteric, 2022, 25(1): 88-95. DOI: 10.1080/13697137.2021.1951204

    [2]

    Inoue T, Maeda K, Satake S, et al. Osteosarcopenia, the co-existence of osteoporosis and sarcopenia, is associated with social frailty in older adults[J]. Aging Clin Exp Res, 2022, 34(3): 535-543. DOI: 10.1007/s40520-021-01968-y

    [3]

    Azpeitia E, Balanzario E P, Wagner A. Signaling pathways have an inherent need for noise to acquire information[J]. BMC Bioinformatics, 2020, 21(1): 462. DOI: 10.1186/s12859-020-03778-x

    [4]

    Ingham P W. Hedgehog signaling[J]. Curr Top Dev Biol, 2022, 149: 1-58.

    [5]

    Hayes C S, Labuzan S A, Menke J A, et al. Ttc39c is upregulated during skeletal muscle atrophy and modulates ERK1/2 MAP kinase and hedgehog signaling[J]. J Cell Physiol, 2019, 234(12): 23807-23824. DOI: 10.1002/jcp.28950

    [6]

    Gozal E, Jagadapillai R, Cai J, et al. Potential crosstalk between sonic hedgehog-WNT signaling and neurovascular molecules: implications for blood-brain barrier integrity in autism spectrum disorder[J]. J Neurochem, 2021, 159(1): 15-28. DOI: 10.1111/jnc.15460

    [7]

    Hamilton A M, Balashova O A, Borodinsky L N. Non-canonical hedgehog signaling regulates spinal cord and muscle regeneration in Xenopus laevis larvae[J]. Elife, 2021, 10: e61804. DOI: 10.7554/eLife.61804

    [8]

    Vicario N, Spitale F M, Tibullo D, et al. Clobetasol promotes neuromuscular plasticity in mice after motoneuronal loss via sonic hedgehog signaling, immunomodulation and metabolic rebalancing[J]. Cell Death Dis, 2021, 12(7): 625. DOI: 10.1038/s41419-021-03907-1

    [9]

    Ohba S. Hedgehog signaling in skeletal development: roles of Indian hedgehog and the mode of its action[J]. Int J Mol Sci, 2020, 21(18): 6665. DOI: 10.3390/ijms21186665

    [10]

    Hou H W, Xue P, Wang Y, et al. Liraglutide regulates proliferation, differentiation, and apoptosis of preosteoblasts through a signaling network of Notch/Wnt/Hedgehog signaling pathways[J]. Eur Rev Med Pharmacol Sci, 2020, 24(23): 12408-12422.

    [11]

    Zhang L W, Fu X J, Ni L, et al. Hedgehog signaling controls bone homeostasis by regulating osteogenic/adipogenic fate of skeletal stem/progenitor cells in mice[J]. J Bone Miner Res, 2022, 37(3): 559-576.

    [12]

    Tarulli G A, Pask A J, Renfree M B. Discrete hedgehog factor expression and action in the developing phallus[J]. Int J Mol Sci, 2020, 21(4): 1237. DOI: 10.3390/ijms21041237

    [13]

    Williams J N, Kambrath A V, Patel R B, et al. Inhibition of CaMKK2 enhances fracture healing by stimulating Indian hedgehog signaling and accelerating endochondral ossifica-tion[J]. J Bone Miner Res, 2018, 33(5): 930-944. DOI: 10.1002/jbmr.3379

    [14]

    Nan K, Zhang Y K, Zhang X, et al. Exosomes from miRNA-378-modified adipose-derived stem cells prevent glucocorticoid-induced osteonecrosis of the femoral head by enhancing angiogenesis and osteogenesis via targeting miR-378 negatively regulated suppressor of fused (Sufu)[J]. Stem Cell Res Ther, 2021, 12(1): 331. DOI: 10.1186/s13287-021-02390-x

    [15] 邓新超, 钱亮, 邹曼. 藏红花素调节Hippo-YAP信号通路抑制膝骨关节炎大鼠软骨细胞凋亡[J]. 中国骨质疏松杂志, 2023, 29(4): 538-543.

    Deng X C, Qian L, Zou M. Crocin regulates Hippo YAP signal pathway and inhibits chondrocyte apoptosis in rats with knee osteoarthritis[J]. Chin J Osteoporos, 2023, 29(4): 538-543.

    [16] 阮凌, 马松, 谢天, 等. HIPPO通路在骨骼肌再生、结构重塑及其运动干预中的研究进展[J]. 生理科学进展, 2023, 54(1): 69-75.

    Ruan L, Ma S, Xie T, et al. Research progress of the HIPPO pathway in the regeneration and structural remodeling of skeletal muscle and in exercise interventions[J]. Prog Physiol Sci, 2023, 54(1): 69-75.

    [17]

    Setiawan I, Sanjaya A, Lesmana R, et al. Hippo pathway effectors YAP and TAZ and their association with skeletal muscle ageing[J]. J Physiol Biochem, 2021, 77(1): 63-73. DOI: 10.1007/s13105-021-00787-z

    [18]

    Yang S F, Chen L, Wang Z Y, et al. Neutrophil extracellular traps induce abdominal aortic aneurysm formation by promoting the synthetic and proinflammatory smooth muscle cell phenotype via Hippo-YAP pathway[J]. Transl Res, 2023, 255: 85-96. DOI: 10.1016/j.trsl.2022.11.010

    [19]

    Yang W L, Lu X Y, Zhang T, et al. TAZ inhibits osteoclastogenesis by attenuating TAK1/NF-κB signaling[J]. Bone Res, 2021, 9(1): 33. DOI: 10.1038/s41413-021-00151-3

    [20]

    Xiong J H, Almeida M, O'Brien C A. The YAP/TAZ transcriptional co-activators have opposing effects at different stages of osteoblast differentiation[J]. Bone, 2018, 112: 1-9. DOI: 10.1016/j.bone.2018.04.001

    [21]

    Zarka M, Haÿ E, Cohen-Solal M. YAP/TAZ in bone and cartilage biology[J]. Front Cell Dev Biol, 2022, 9: 788773. DOI: 10.3389/fcell.2021.788773

    [22]

    Yu B, Huo L H, Liu Y S, et al. PGC-1α controls skeletal stem cell fate and bone-fat balance in osteoporosis and skeletal aging by inducing TAZ[J]. Cell Stem Cell, 2018, 23(2): 193-209. e5. DOI: 10.1016/j.stem.2018.06.009

    [23]

    Li L, Zhou X, Zhang J T, et al. Exosomal miR-186 derived from BMSCs promote osteogenesis through hippo signaling pathway in postmenopausal osteoporosis[J]. J Orthop Surg Res, 2021, 16(1): 23. DOI: 10.1186/s13018-020-02160-0

    [24] 邵家豪, 李超, 张贤. 骨质疏松中的自噬相关信号通路[J]. 中国骨质疏松杂志, 2021, 27(12): 1863-1867. DOI: 10.3969/j.issn.1006-7108.2021.12.026

    Shao J H, Li C, Zhang X. Associated signaling pathway of autophagy in osteoporosis[J]. Chin J Osteoporos, 2021, 27(12): 1863-1867. DOI: 10.3969/j.issn.1006-7108.2021.12.026

    [25] 斯日古楞, 李天柱, 乌英嘎, 等. 二十碳五烯酸激活PI3K/mTOR/p70S6K通路改善快速老化小鼠肌肉功能[J]. 中国新药与临床杂志, 2021, 40(10): 713-718.

    Siriguleng, Li T Z, Wu Y G, et al. Eicosapentaenoic acid improves muscle function of aging mice by activating PI3K/mTOR/p70S6K pathway[J]. Chin J New Drugs Clin Remedies, 2021, 40(10): 713-718.

    [26]

    Chen L, Chen L L, Wan L L, et al. Matrine improves skeletal muscle atrophy by inhibiting E3 ubiquitin ligases and activating the Akt/mTOR/FoxO3α signaling pathway in C2C12 myotubes and mice[J]. Oncol Rep, 2019, 42(2): 479-494.

    [27]

    Baraldo M, Geremia A, Pirazzini M, et al. Skeletal muscle mTORC1 regulates neuromuscular junction stability[J]. J Cachexia Sarcopenia Muscle, 2020, 11(1): 208-225. DOI: 10.1002/jcsm.12496

    [28]

    You J S, McNally R M, Jacobs B L, et al. The role of raptor in the mechanical load-induced regulation of mTOR signaling, protein synthesis, and skeletal muscle hypertrophy[J]. FASEB J, 2019, 33(3): 4021-4034. DOI: 10.1096/fj.201801653RR

    [29]

    Anand A, Nambirajan A, Kumar V, et al. Alterations in autophagy and mammalian target of rapamycin (mTOR) pathways mediate sarcopenia in patients with cirrhosis[J]. J Clin Exp Hepatol, 2022, 12(2): 510-518. DOI: 10.1016/j.jceh.2021.05.004

    [30]

    Liu H L, Huang B, Xue S L, et al. Functional crosstalk between mTORC1/p70S6K pathway and heterochromatin organization in stress-induced senescence of MSCs[J]. Stem Cell Res Ther, 2020, 11(1): 279. DOI: 10.1186/s13287-020-01798-1

    [31]

    Lee S Y, Abel E D, Long F X. Glucose metabolism induced by Bmp signaling is essential for murine skeletal development[J]. Nat Commun, 2018, 9(1): 4831. DOI: 10.1038/s41467-018-07316-5

    [32]

    Son S M, Park S J, Stamatakou E, et al. Leucine regulates autophagy via acetylation of the mTORC1 component raptor[J]. Nat Commun, 2020, 11(1): 3148. DOI: 10.1038/s41467-020-16886-2

    [33]

    Zhang Y, Xu S, Li K, et al. mTORC1 inhibits NF-κB/NFATc1 signaling and prevents osteoclast precursor differentiation, in vitro and in mice[J]. J Bone Miner Res, 2017, 32(9): 1829-1840. DOI: 10.1002/jbmr.3172

    [34] 王屿萌, 廖苾芝, 周达岸. 大鼠骨骼肌挫伤修复过程中p38 MAPK通路、炎症反应的作用[J]. 中国老年学杂志, 2021, 41(19): 4340-4344. DOI: 10.3969/j.issn.1005-9202.2021.19.056

    Wang Y M, Liao B Z, Zhou D A. Analysis of the role of p38 MAPK pathway and inflammatory response in the repair of skeletal muscle contusion in rats[J]. Chin J Gerontol, 2021, 41(19): 4340-4344. DOI: 10.3969/j.issn.1005-9202.2021.19.056

    [35]

    Bengal E, Aviram S, Hayek T. p38 MAPK in glucose metabolism of skeletal muscle: beneficial or harmful?[J]. Int J Mol Sci, 2020, 21(18): 6480. DOI: 10.3390/ijms21186480

    [36]

    Wang M J, Yang B R, Jing X Y, et al. P2Y1R and P2Y2R: potential molecular triggers in muscle regeneration[J]. Purinergic Signal, 2023, 19(1): 305-313.

    [37]

    Xin X P, Hou Y T, Li L N, et al. IGF-Ⅰ increases IGFBP-5 and collagen alpha1(Ⅰ) mRNAs by the MAPK pathway in rat intestinal smooth muscle cells[J]. Am J Physiol Gastrointest Liver Physiol, 2004, 286(5): G777-G783.

    [38]

    Lee J S, Kim M E, Seon J K, et al. Bone-forming peptide-3 induces osteogenic differentiation of bone marrow stromal cells via regulation of the ERK1/2 and Smad1/5/8 pathways[J]. Stem Cell Res, 2018, 26: 28-35.

    [39] 张旭, 刘石磊, 齐万里. 基于网络药理学及分子对接方法探讨大豆异黄酮治疗骨质疏松的机制[J]. 中药新药与临床药理, 2023, 34(2): 214-221.

    Zhang X, Liu S L, Qi W L. Exploring the mechanism of soy isoflavone in the treatment of osteoporosis based on network pharmacology and molecular docking[J]. Tradit Chin Drug Res Clin Pharmacol, 2023, 34(2): 214-221.

  • 期刊类型引用(2)

    1. 李佳乐,王礼宁,郭杨,朱弈桦,马勇. 膳食蛋白对骨骼健康影响的研究进展. 现代医药卫生. 2025(02): 468-473 . 百度学术
    2. 黄倩如. 基于MAPK信号通路探讨渐进性抗阻训练对慢性肌肉损伤大鼠修复的效果及机制. 福建医药杂志. 2025(02): 60-64 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  526
  • HTML全文浏览量:  265
  • PDF下载量:  36
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-06-07
  • 录用日期:  2023-07-17
  • 刊出日期:  2024-01-29

目录

    /

    返回文章
    返回
    x 关闭 永久关闭