CHEN Youxin, XU Zhiyan. Artificial Intelligence Assisted Therapeutic Regimen and Technology Transformation in Retinal Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1131-1134. DOI: 10.12290/xhyxzz.2023-0247
Citation: CHEN Youxin, XU Zhiyan. Artificial Intelligence Assisted Therapeutic Regimen and Technology Transformation in Retinal Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1131-1134. DOI: 10.12290/xhyxzz.2023-0247

Artificial Intelligence Assisted Therapeutic Regimen and Technology Transformation in Retinal Diseases

Funds: 

Capital's Funds for Health Improvement and Research Z191100007719002

AI+ Health Collaborative Innovation Cultivation Project Z221100003522026

AI+ Health Collaborative Innovation Cultivation Project Z211100003521020

National High Level Hospital Clinical Research Funding 2022-PUMCH-B-101

More Information
  • Corresponding author:

    CHEN Youxin, E-mail: chenyouxinpumch@163.com

  • Received Date: May 22, 2023
  • Accepted Date: October 16, 2023
  • Issue Publish Date: November 29, 2023
  • In recent years, artificial intelligence (AI) technology has gradually penetrated into many medical specialties, bringing unprecedented changes to the medical field. At present, with the application of AI technology in the field of ophthalmology developing rapidly, AI diagnosis is rapid, highly accurate and objective, which can optimise the diagnosis and treatment mode of ophthalmology patients and greatly improve the efficiency of clinical diagnosis. Some AI ophthalmic imaging research has been translated into products, and therefore both domestic and international AI retinal imaging products are now available. However, due to various factors such as training data, R&D capability, clinical validation and market adaptation, many research outcomes still wait to to be translated. Therefore, we propose new therapeutic regimens of retinal diseases and analyze the underlying constraints to technology translation in AI research, with the hope of improving the use of AI technology in the diagnosis and treatment of fundus diseases.
  • [1]
    Curteanu S, Cartwright H. Neural networks applied in chemistry. Ⅰ. Determination of the optimal topology of multilayer perceptron neural networks[J]. J Chemometrics, 2011, 25: 527-549. DOI: 10.1002/cem.1401
    [2]
    Anton N, Doroftei B, Curteanu S, et al. Comprehensive Review on the Use of Artificial Intelligence in Ophthalmology and Future Research Directions[J]. Diagnostics (Basel), 2022, 13: 100. DOI: 10.3390/diagnostics13010100
    [3]
    Ting DSW, Pasquale LR, Peng L, et al. Artificial intelligence and deep learning in ophthalmology[J]. Br J Ophthalmol, 2019, 103: 167-175. DOI: 10.1136/bjophthalmol-2018-313173
    [4]
    明帅, 姚溪, 谢坤鹏, 等. 糖尿病视网膜病变人工智能自动诊断系统在社区和医院老年糖尿病患者中的应用效果分析[J]. 中华眼底病杂志, 2022, 38: 120-125.
    [5]
    Xu Z, Wang W, Yang J, et al. Automated diagnoses of age-related macular degeneration and polypoidal choroidal vasculopathy using bi-modal deep convolutional neural networks[J]. Br J Ophthalmol, 2021, 105: 561-566. DOI: 10.1136/bjophthalmol-2020-315817
    [6]
    Peng Y, Dharssi S, Chen Q, et al. DeepSeeNet: A Deep Learning Model for Automated Classification of Patient-based Age-related Macular Degeneration Severity from Color Fundus Photographs[J]. Ophthalmology, 2019, 126: 565-575. DOI: 10.1016/j.ophtha.2018.11.015
    [7]
    Burlina PM, Joshi N, Pacheco KD, et al. Use of Deep Learning for Detailed Severity Characterization and Estimation of 5-Year Risk Among Patients With Age-Related Macular Degeneration[J]. JAMA Ophthalmol, 2018, 136: 1359-1366. DOI: 10.1001/jamaophthalmol.2018.4118
    [8]
    Yoo TK, Kim SH, Kim M, et al. DeepPDT-Net: predicting the outcome of photodynamic therapy for chronic central serous chorioretinopathy using two-stage multimodal transfer learning[J]. Sci Rep, 2022, 12: 18689. DOI: 10.1038/s41598-022-22984-6
    [9]
    Xu F, Yu X, Gao Y, et al. Predicting OCT images of short-term response to anti-VEGF treatment for retinal vein occlusion using generative adversarial network[J]. Front Bioeng Biotechnol, 2022, 10: 914964. DOI: 10.3389/fbioe.2022.914964
    [10]
    Oh R, Lee EK, Bae K, et al. Deep Learning-based Prediction of Axial Length Using Ultra-widefield Fundus Photography[J]. Korean J Ophthalmol, 2023, 37: 95-104. DOI: 10.3341/kjo.2022.0059
    [11]
    Niu Y, Gu L, Zhao Y, et al. Explainable Diabetic Retinopathy Detection and Retinal Image Generation[J]. IEEE J Biomed Health Inform, 2022, 26: 44-55. DOI: 10.1109/JBHI.2021.3110593
  • Cited by

    Periodical cited type(6)

    1. 钟小芳,李雅,朱虹,孙致远,赵舒扬. 基于政策工具的我国抗肿瘤创新药物政策文件分析. 医药导报. 2024(04): 654-660 .
    2. 王潇,文敏,郑沛,刘秋叶,左亚杰. 土鳖虫化学成分和药理作用的研究进展及其质量标志物(Q-Marker)的预测分析. 环球中医药. 2024(05): 933-940 .
    3. 刘娟,李庆,朱胜钦,薛志勇. 3-甲基-6-氨甲基-喹喔啉-2-甲酸衍生物的合成. 合成化学. 2024(07): 622-626 .
    4. 巫建群,邓晓莉. 95例新型抗肿瘤药物不良反应分析. 海峡药学. 2024(11): 114-117 .
    5. 刘肃,刘颍,朱飞跃. 关于药品定期安全性更新报告审核的一点思考. 药品评价. 2024(10): 1174-1177 .
    6. 李佳新. 抗肿瘤药物的分类及不良影响研究现状. 人人健康. 2023(10): 99-101 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (733) PDF downloads (113) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close