Citation: | CHEN Youxin, XU Zhiyan. Artificial Intelligence Assisted Therapeutic Regimen and Technology Transformation in Retinal Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1131-1134. DOI: 10.12290/xhyxzz.2023-0247 |
[1] |
Curteanu S, Cartwright H. Neural networks applied in chemistry. Ⅰ. Determination of the optimal topology of multilayer perceptron neural networks[J]. J Chemometrics, 2011, 25: 527-549. DOI: 10.1002/cem.1401
|
[2] |
Anton N, Doroftei B, Curteanu S, et al. Comprehensive Review on the Use of Artificial Intelligence in Ophthalmology and Future Research Directions[J]. Diagnostics (Basel), 2022, 13: 100. DOI: 10.3390/diagnostics13010100
|
[3] |
Ting DSW, Pasquale LR, Peng L, et al. Artificial intelligence and deep learning in ophthalmology[J]. Br J Ophthalmol, 2019, 103: 167-175. DOI: 10.1136/bjophthalmol-2018-313173
|
[4] |
明帅, 姚溪, 谢坤鹏, 等. 糖尿病视网膜病变人工智能自动诊断系统在社区和医院老年糖尿病患者中的应用效果分析[J]. 中华眼底病杂志, 2022, 38: 120-125.
|
[5] |
Xu Z, Wang W, Yang J, et al. Automated diagnoses of age-related macular degeneration and polypoidal choroidal vasculopathy using bi-modal deep convolutional neural networks[J]. Br J Ophthalmol, 2021, 105: 561-566. DOI: 10.1136/bjophthalmol-2020-315817
|
[6] |
Peng Y, Dharssi S, Chen Q, et al. DeepSeeNet: A Deep Learning Model for Automated Classification of Patient-based Age-related Macular Degeneration Severity from Color Fundus Photographs[J]. Ophthalmology, 2019, 126: 565-575. DOI: 10.1016/j.ophtha.2018.11.015
|
[7] |
Burlina PM, Joshi N, Pacheco KD, et al. Use of Deep Learning for Detailed Severity Characterization and Estimation of 5-Year Risk Among Patients With Age-Related Macular Degeneration[J]. JAMA Ophthalmol, 2018, 136: 1359-1366. DOI: 10.1001/jamaophthalmol.2018.4118
|
[8] |
Yoo TK, Kim SH, Kim M, et al. DeepPDT-Net: predicting the outcome of photodynamic therapy for chronic central serous chorioretinopathy using two-stage multimodal transfer learning[J]. Sci Rep, 2022, 12: 18689. DOI: 10.1038/s41598-022-22984-6
|
[9] |
Xu F, Yu X, Gao Y, et al. Predicting OCT images of short-term response to anti-VEGF treatment for retinal vein occlusion using generative adversarial network[J]. Front Bioeng Biotechnol, 2022, 10: 914964. DOI: 10.3389/fbioe.2022.914964
|
[10] |
Oh R, Lee EK, Bae K, et al. Deep Learning-based Prediction of Axial Length Using Ultra-widefield Fundus Photography[J]. Korean J Ophthalmol, 2023, 37: 95-104. DOI: 10.3341/kjo.2022.0059
|
[11] |
Niu Y, Gu L, Zhao Y, et al. Explainable Diabetic Retinopathy Detection and Retinal Image Generation[J]. IEEE J Biomed Health Inform, 2022, 26: 44-55. DOI: 10.1109/JBHI.2021.3110593
|