放射性药物联合免疫检查点抑制剂协同抗肿瘤研究新进展

曾馨莹, 文雪君, 郭志德, 张现忠

曾馨莹, 文雪君, 郭志德, 张现忠. 放射性药物联合免疫检查点抑制剂协同抗肿瘤研究新进展[J]. 协和医学杂志, 2023, 14(4): 680-690. DOI: 10.12290/xhyxzz.2023-0159
引用本文: 曾馨莹, 文雪君, 郭志德, 张现忠. 放射性药物联合免疫检查点抑制剂协同抗肿瘤研究新进展[J]. 协和医学杂志, 2023, 14(4): 680-690. DOI: 10.12290/xhyxzz.2023-0159
ZENG Xinying, WEN Xuejun, GUO Zhide, ZHANG Xianzhong. Advances in Synergistic Antitumor Effects of Radiopharmaceuticals Combined with Immune Checkpoint Inhibitors[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(4): 680-690. DOI: 10.12290/xhyxzz.2023-0159
Citation: ZENG Xinying, WEN Xuejun, GUO Zhide, ZHANG Xianzhong. Advances in Synergistic Antitumor Effects of Radiopharmaceuticals Combined with Immune Checkpoint Inhibitors[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(4): 680-690. DOI: 10.12290/xhyxzz.2023-0159

放射性药物联合免疫检查点抑制剂协同抗肿瘤研究新进展

基金项目: 

国家自然科学基金 81901805

国家自然科学基金 21976150

国家自然科学基金 21906135

中央高水平医院临床科研专项 2022-PUMCH-B-071

中央高水平医院临床科研专项 2023-PUMCH-E-007

详细信息
    通讯作者:

    郭志德, E-mail: gzd666888@xmu.edu.cn

    张现忠, E-mail: zhangxzh@hotmail.com

  • 中图分类号: R45;R73

Advances in Synergistic Antitumor Effects of Radiopharmaceuticals Combined with Immune Checkpoint Inhibitors

Funds: 

National Natural Science Foundation of China 81901805

National Natural Science Foundation of China 21976150

National Natural Science Foundation of China 21906135

National High Level Hospital Clinical Research Funding 2022-PUMCH-B-071

National High Level Hospital Clinical Research Funding 2023-PUMCH-E-007

More Information
  • 摘要: 靶向放射性核素治疗诱导DNA双链断裂,激活cGAS-STING通路、NF-κB/IRF3通路和STAT1/3-IRF1通路,上调程序性死亡受体配体1(programmed death-ligand 1,PD-L1)的表达,促炎细胞因子、CD8+ T细胞及CD4+ T细胞在肿瘤中浸润增加,为免疫检查点抑制剂治疗提供了有利的免疫原性微环境。联合治疗使得正向调节免疫反应的记忆效应T细胞、M1型巨噬细胞及树突状细胞浸润增加,免疫抑制性的调节性T细胞、M2型巨噬细胞及髓源性抑制细胞下调,部分小鼠肿瘤完全缓解并产生免疫记忆。值得注意的是,放射性诊断药物2-[18F]FDG联合PD-L1抗体治疗也可调控免疫微环境,显著提高疗效。本文主要综述目前典型的放射性药物联合免疫检查点抑制剂协同抗肿瘤治疗策略,并强调联合治疗时间窗以及不同的治疗组合可能改善治疗效果,提出诊断放射性药物联合免疫治疗有望成为一种新的肿瘤治疗范式,或将成为未来研究的重要方向。
    Abstract: Targeted radionuclide therapy (TRT) provides an immunogenic microenvironment for immune checkpoint inhibitor (ICI) therapy by inducing DNA double-strand break, activating the cGAS-STING, NF-κB/IRF3 and STAT1/3-IRF1 pathways, up-regulating the expression of PD-L1, and increasing the infiltration of pro-inflammatory cytokines, CD8+ T cells and CD4+ T cells in tumors. The combined therapy could increase the infiltration of memory effector T cells, M1 macrophages and dendritic cells which positively regulate immune response, and downregulate immunosuppressive regulatory T cells, M2 macrophages and myeloid-derived suppressor cells. Partial complete remission and immune memory were achieved in tumor-bearing mice treated with combined therapy. It is worth noting that radiodiagnostic agent 2-[18F]FDG combined with anti-PD-L1 mAb could also reprogram the immune microenvironment and significantly improve therapeutic effect. This review presents typical combination therapy strategies, emphasizes the time window of combination therapy and different combinations of therapy that may improve the therapeutic effect, and proposes that radiodiagnostic agents combined with tumor immunotherapy are expected to become a new paradigm and a direction for further research in the future.
  • 非酒精性脂肪性肝病(nonalcoholic fatty liver disease, NAFLD) 是最常见的慢性肝病,全球范围内患病率高达30%[1]。近期,三大国际肝病学会发表了关于脂肪肝命名的共识声明[2],指出NAFLD的定义难以概括肝脂肪变性与全身代谢紊乱的联系,且具有潜在的污名化含义,故将NAFLD更名为代谢功能障碍相关脂肪性肝病(metabolic dysfunction-associated steatotic liver disease, MASLD)。新定义反映了肝脂肪变性与代谢综合征、糖尿病、高血压、高脂血症以及肥胖等慢性代谢疾病的相关性。MASLD的特点是肝脏脂质过度积累导致肝脂肪变性,继而产生脂毒性并诱导免疫炎症反应引发肝损伤, 进一步发展可导致代谢功能障碍相关脂肪性肝炎(metabolic dysfunction-associated steatohepatitis, MASH)、肝纤维化甚至肝癌[3]。MASLD的发病机制十分复杂,可能受胰岛素抵抗(insulin resistance, IR)、慢性炎症、肠道微生物紊乱及遗传易感性等多种危险因素的共同影响。对于MASLD的治疗目前尚无特定手段,主要依赖于生活方式调节,因此,对其发病机制与治疗方法的探索具有重要临床意义[4]

    癌胚抗原相关细胞黏附分子1(carcinoembryonic antigen-related cell adhesion molecule 1,CEACAM1) 是高度糖基化细胞黏附分子CEA家族的成员,主要表达于上皮与内皮细胞[5]。研究发现,CEACAM1参与诱导肝细胞分化,且在多种恶性肿瘤组织中可观察到CEACAM1表达水平下调[6]。多项研究表明,CEACAM1对肝脏具有显著保护作用,其可促进肝内胰岛素清除并减少肝脏脂肪生成,在肝脂肪变性大鼠与MASLD患者的肝脏中均发现CEACAM1水平下降[7-8],因此CEACAM1表达水平上调可能使MASLD患者获益。本文对CEACAM1在MASLD发生发展中的作用机制及治疗作一综述, 旨在为MASLD的诊治提供新思路。

    CEACAM1最早发现于胆汁中,被认为是人体消化道正常组织抗原而得名为胆汁糖蛋白。CEACAM1由细胞外糖基化免疫球蛋白结构域、跨膜区与胞质结构组成,细胞外结构域有长或短的细胞质尾区,胞质域内含有2个酪氨酸残基, 可被胰岛素受体、表皮生长因子受体及其他酪氨酸激酶磷酸化从而参与信号传导[9]。CEACAM1基因位于染色体19q13.2区,含有9个外显子,转录修饰过程大量存在选择性剪接,可产生12种剪接亚型, 不同亚型根据胞外结构域的数量及胞质尾区的长度进行区分[10]。人类和小鼠两种主要的CEACAM1亚型含有4个胞外结构域和1个长或短的胞质尾区, 即CEACAM1-4L和CEACAM1-4S。第7外显子通过选择性剪接形成2种不同的CEACAM1亚型: CEACAM1-L和CEACAM1-S。

    CEACAM1-L的特殊之处在于其胞质尾区含有2个基于免疫受体酪氨酸的抑制基团,啮齿动物CEACAM1-L中含有2个基于免疫受体酪氨酸的开关基团,这些结构特征表明CEACAM1-L磷酸化时会向胞内传递抑制信号[11]。CEACAM1-S可与钙调素、肌球蛋白、球状肌动蛋白、附件蛋白Ⅱ和聚合酶δ相互作用蛋白p38 (polymerase delta interacting protein p38, PDIP38) 结合,并被蛋白激酶磷酸化,从而调节细胞骨架的动态变化[12]。CEACAM1主要在上皮细胞、内皮细胞和白细胞中表达,但在骨骼肌细胞和软骨细胞中不表达。CEACAM1蛋白在人类和啮齿类动物中的结构和功能高度保守,且具有相同的组织表达模式,最常见的是不同CEACAM1亚型在同一细胞中共同表达,其相对表达水平决定了细胞信号传导的结果[13]。亚型的多样性赋予了CEACAM1多种生物学功能,包括介导细胞黏附、参与机体炎症反应与胰岛素代谢、促进血管增生及影响免疫应答等[14]

    胰岛素拮抗脂肪分解,不仅介导甘油三酯(triglyceride, TG) 在脂肪组织中的储存,且促进脂肪酸的酯化和储存。IR是指肌肉组织、脂肪组织及肝脏等胰岛素靶组织对其敏感性下降,临床上主要表现为高胰岛素血症。IR状态下脂肪分解增加,游离脂肪酸(free fatty acids, FFAs) 大量释放, 过量的FFAs进入肝脏并刺激富含TG的极低密度脂蛋白(very low-density lipoprotein, VLDL)分泌,最终形成脂质的异位沉积[15]。同时,大量FFAs在非脂肪组织积聚产生的脂毒性会进一步加重IR,导致高胰岛素血症状态发生恶性循环[16]。IR是引起MASLD发生发展的重要机制,既往研究表明二者之间存在密切联系[17]

    CEACAM1是肝脏中胰岛素受体酪氨酸激酶的内源性底物,但在骨骼肌和脂肪组织等其他胰岛素敏感组织中却无这种特性[18]。生理学实验发现胰岛素自胰腺β细胞中脉冲式释放, 导致门静脉胰岛素浓度急剧升高并促使肝细胞中胰岛素受体自身酪氨酸激酶的磷酸化激活, 进而通过信号传递引发其底物发生磷酸化, 包括CEACAM1[19]。肝脏可清除80%从胰腺β细胞释放至门静脉循环中的胰岛素, 动物模型表明CEACAM1在此过程中发挥核心作用,即磷酸化的CEACAM1可促进经受体介导的胰岛素进入具有内吞作用的网格蛋白小泡,最终在溶酶体中被降解[20-21]。高胰岛素血症与胰岛素脉冲式释放受损可抑制CEACAM1的磷酸化过程。Bril等[22]将190例研究对象分为非MASLD组、单纯肝脂肪变性组及MASH组进行研究,结果发现与胰岛素分泌增加相比,MASLD患者高胰岛素血症与胰岛素清除率降低的关系更为密切。1型糖尿病(type 1 diabetes mellitus, T1DM)患者通过外源性胰岛素给药可导致胰岛素的脉冲式释放受到干扰,由此可推测T1DM患者的CEACAM1功能受损,但De Vries等[23-24]的研究并未发现T1DM患者MASLD患病率高于正常人群,因此这一假设尚需更深入的研究加以证实。

    Poy等[25]发现CEACAM1胞尾区Tyr488连接并封闭含有SH2适配蛋白(SH2-containg adapter protein, SHC) 的SH2结构域,不仅限制生长因子受体结合蛋白2与胰岛素受体的偶联,还抑制由Ras/MAPK信号通路介导的有丝分裂途径,降低了肝细胞有丝分裂活性。同时, CEACAM1与SHC的结合增强了其与胰岛素受体底物1(insulin receptor substrate 1, IRS-1) 竞争被胰岛素受体磷酸化的能力,下调促进细胞增殖的IRS-1/PI3K/AKT通路,从而抑制肝细胞的增殖。此外, CEACAM1的磷酸化受到与Tyr488结合的非受体蛋白酪氨酸磷酸酶SHP-2的调控, SHP-2可使IRS-1去磷酸化并抑制其作用,CEACAM1连接SHP-2并阻止其与IRS-1结合,从而使IRS-1在肝内持续传导胰岛素信号[26]。肝脏中IR的条件性无效突变(conditional null mutation of the IR in the liver, LIRKO) 小鼠证实,肝脏中的正常胰岛素信号通路是调节全身胰岛素敏感性所必需的, 肝细胞中的胰岛素信号缺失会导致严重的原发性肝IR和慢性高胰岛素血症[27]。动物实验发现,CEACAM1磷酸化基因位点突变的小鼠会出现胰岛素清除障碍并导致继发性IR[27]。此外,CEACAM1基因突变小鼠可发生肝炎并出现桥接纤维化,这是MASH的主要特征[28]。肝纤维化主要由TGFβ-Smad2/3通路介导,并受内皮素-1 (endothelin-1, ET-1) 和血小板源性生长因子-B(platelet derived growth factor-B, PDGF-B) 两种关键的促纤维化因子驱动[29-30]。CEACAM1缺失导致的高胰岛素血症可促使ET-1水平升高并激活核转录因子κB(nuclear factor kappa-B, NF-κB),活化的NF-κB促进PDGF-B基因转录, PDGF-B与ET-1通过刺激肝星状细胞增殖以诱导胶原蛋白的产生, 从而促进肝纤维化[30-31]。另一项动物实验发现,肝脏CEACAM1过表达可逆转高胰岛素血症诱发的MASH相关症状并防止肝纤维化,CEACAM1可能通过胰岛素清除改善IR状态并抑制脂毒性及炎症因子释放, 使ET-1和PDGF-B恢复正常[32-33]。综上所述,CEACAM1在肝脏胰岛素清除中发挥核心作用,但有关CEACAM1介导胰岛素清除与肝纤维化之间关系的机制仍有待进一步研究。

    门静脉的胰岛素浓度是体循环的2~3倍[34],高浓度的胰岛素诱导肝脏新生脂肪合成(de novo lipogenesis, DNL), 其可能机制是肝细胞中的固醇调节元件结合蛋白(sterol regulatory element-binding proteins, SREBPs) 转录因子被胰岛素激活, 造成脂肪生成所必需的关键酶活性提高,如葡萄糖激酶、肝型丙酮酸激酶(liver-type pyruvate kinase, LPK)、脂肪酸合成酶(fatty acid synthase, FASN) 和乙酰辅酶A羧基酶(acetyl-CoA-carboxylase, ACC)[35]。FASN是DNL过程中催化丙二酰辅酶A转化为软脂酸的关键酶, 然而,生理情况下肝脏FASN活性很低, Matveyenko等[36]发现这与胰岛素脉冲式释放导致的CEACAM1迅速磷酸化有关, 大量磷酸化的CEACAM1可下调FASN酶活性,保护肝脏免受高胰岛素水平带来的潜在脂肪生成效应。

    相应的, 高脂肪通过过氧化物酶体增殖物激活受体α (peroxisome-proliferator-activated receptor α, PPARα)依赖性下调CEACAM1的表达。PPARα是一种核受体,参与脂肪酸β氧化关键基因的表达,可通过降低CEACAM1基因mRNA水平以抑制CEACAM1蛋白转录[37]。肥胖人群体循环中的FFAs水平远高于正常体质量者, 且CEACAM1水平更低,加速了肝脂肪变性[38]。高脂水平促进MASLD的另一重要机制是脂肪浸润刺激骨髓衍生细胞, 使其分化为促炎巨噬细胞并释放多种促炎细胞因子, 如肿瘤坏死因子α(tumor necrosis factor-α, TNF-α)、白细胞介素(interleukin)-1β、IL-6、干扰素-γ (interferon-γ, IFN-γ) 等[39]。诸多研究发现, 促炎因子水平在MASH患者及小鼠体内显著升高, 并与病变程度呈正相关[40-41]。这些促炎因子能够调节脂质代谢与炎症反应, 例如, TNF-α可干扰胰岛素信号传导, 下调葡萄糖转运体-4(glucose transporter-4, GLUT-4)的表达而加剧IR[42]。一项动物实验表明,高脂饮食(high fat diet, HFD)3周后小鼠肝脏CEACAM1水平降低, 导致胰岛素清除受到损害而出现高胰岛素血症,高胰岛素血症刺激下丘脑摄食中枢引起食欲亢进并刺激棕色脂肪生成基因的表达, 加剧了肝脂肪的变性。其他相关研究亦发现,与野生型小鼠相比,肝脏特异性失活(liver-specific inactivation, L-SACC1)和CEACAM1完全零突变(global null mutation of ceacam1, Cc1-/-) 小鼠均表现出体质量上升和内脏脂肪增多[43-44]。该实验进一步发现即使在维持HFD的情况下, 肝脏重新输注CEACAM1仍可去除IR带来的不良代谢影响[45]。肝脏CEACAM1水平上调对脂肪组织胰岛素敏感性的积极作用部分是通过成纤维细胞生长因子21(fibroblast growth factor 21, FGF21) 介导的,FGF21能够作用于中枢系统诱导产热基因的表达并刺激交感神经活动, 从而引起运动量和能量消耗增加[46]。一项针对亚洲男性的研究证实,在骨骼肌和白色脂肪组织不受其他代谢因素影响的情况下,高脂肪饮食摄入降低了胰岛素的敏感性, 胰岛素清除障碍与肝脏IR风险增加有关[47]

    肠-肝轴异常和肠道通透性升高是肝脏代谢功能障碍的重要危险因素,可能导致肝脏炎症并引起MASLD/MASH[48]。CEACAM1控制粒细胞的生成并延迟中性粒细胞的凋亡, 可防止过度炎症反应[49-50]。肠道和肝脏之间的免疫串扰可显著促进炎症性肠病(inflammatory bowel disease, IBD) 的肠外表现,其可能机制是黏膜T细胞的非典型免疫细胞归巢或胸腔导管的黏膜T细胞循环, 然而目前尚不确定黏膜T细胞是否可进入肝脏并释放炎症信号[51-52]。研究表明, CEACAM1通过介导T细胞激活与调节性T细胞(regulatory T cell, Treg) 在肝脏的表达而维持肠道黏膜免疫稳定性,抑制IBD及其肠外表现[53]。与正常人群相比,MASLD患者的肠道微生物群种类减少,肠道病原体防御屏障减弱[54], 但研究发现CEACAM1-S过度表达的小鼠肠道微生物群种类有所增加[55]。此外,CEACAM1是幽门螺杆菌、大肠杆菌、沙门氏菌及白色念珠菌等多种致病胃肠道微生物的受体, 可通过释放细菌代谢产物来调节肠道相关免疫耐受并诱导T细胞群从肠道迁移, 以抑制肝脏免疫炎症反应[56]

    过氧化物酶体增殖物激活受体γ (peroxisome proliferator-activated receptor γ, PPARγ) 是一种配体依赖的转录调节因子, 已被发现可促进肝细胞中CEACAM1蛋白的合成[57]。经肠道合成的激素胰高血糖素样肽-1 (glucagon-like peptide-1, GLP-1) 能够刺激PPARγ表达水平上调,国外一项研究发现慢性高胰岛素血症患者GLP-1活性降低[58]。因此, 激活GLP-1的表达或可作为增强CEACAM1肝脏保护作用的一种疗法。研究发现,GLP-1受体激动剂艾塞那肽诱导HFD饲养小鼠肝脏CEACAM1的表达,有助于促进胰岛素清除并增强其敏感性,降低小鼠肝脂肪变性的风险[59]。另一项动物实验发现, 艾塞那肽逆转了HFD带来的小鼠肝脏炎性改变并抑制TGFβ/Smad2/Smad3促纤维化信号通路的激活[60]。这两项研究证实通过调节CEACAM1的表达水平维持胰岛素稳态对于肝脂肪变性的治疗意义,临床转化前景广阔。

    MASLD是最常见的慢性肝病, CEACAM1水平上调促进胰岛素的清除, 限制了高胰岛素状态并减少了肝脏中的脂质沉积。MASLD患者的肝脏CEACAM1水平下调与病变严重程度呈正向关系。针对CEACAM1表达的小鼠试验模型进一步揭示了肝脏CEACAM1独特的代谢调节作用,CEACAM1基因缺失会损害胰岛素清除,引起高胰岛素血症并导致继发性IR和肝脏脂质生成增加。CEACAM1在MASLD/MASH发病机制中发挥关键作用(图 1),对CEACAM1分子机制的深入研究有望为MASLD患者开辟新的治疗途径。一些药物,如GLP-1受体激动剂,已显示出对肝脏脂肪变性的拮抗作用,但其治疗MASLD的有效性, 尚需在患病人群中深入研究。

    图  1  CEACAM1在MASLD发生发展中的作用机制
    MASLD(metabolic dysfunction-associated steatotic liver disease): 代谢功能障碍相关脂肪性肝病;MASH(metabolic dysfunction-associated steatohepatitis): 代谢功能障碍相关脂肪性肝炎;FFAs(free fatty acids): 游离脂肪酸;TG(triglyceride): 甘油三酯;VLDL(very low-density lipoprotein): 极低密度脂蛋白;ET-1(endothelin-1): 内皮素-1;PDGF-B(platelet derived growth factor-B): 血小板源性生长因子B;IR(insulin resistance): 胰岛素抵抗;TNF-α(tumor necrosis factor-α): 肿瘤坏死因子α;IL(interleukin): 白细胞介素;IFN-γ(interferon-γ): 干扰素-γ;HFD(high fat die): 高脂饮食;Obese: 肥胖;Fat: 脂肪;FASN(fatty acid synthase): 脂肪酸合成酶;FGF21(fibroblast growth factor 21): 成纤维细胞生长因子21;CEACAM1(carcinoembryonic antigen-related cell adhesion molecule 1): 癌胚抗原相关细胞黏附分子1;Insulin level: 胰岛素水平;IRS-1(insulin receptor substrate 1): 胰岛素受体底物-1;T-cell: T细胞;Intestinal flora: 肠道菌群;PPAR(peroxisome-proliferator-activated receptor): 过氧化物酶体增殖物激活受体;Exenatide: 艾塞那肽
    Figure  1.  Mechanism of CEACAM1 in the occurrence and development of MASLD
    作者贡献:曾馨莹、文雪君负责文献检索、论文撰写及修订;郭志德、张现忠负责论文选题和审校。
    利益冲突:所有作者均声明不存在利益冲突
  • 图  1   2-[18F]FDG联合PD-L1 ICI治疗可显著延缓肿瘤生长,提高荷瘤小鼠总生存期

    A.MC38荷瘤小鼠的治疗程序和时间表示意图;B.不同治疗组MC38荷瘤小鼠的个体肿瘤生长情况以及90 d存活率(αP指PD-L1抗体剂量为10 mg/kg,αP##指PD-L1抗体剂量为20 mg/kg;18F-F指2-[18F]FDG剂量为925 MBq/kg,18F-F##指2-[18F]FDG剂量为1850 MBq/kg;@4 h指PD-L1抗体与2-[18F]FDG的给药时间窗为4 h);C.2-[18F]FDG诱导MC38荷瘤小鼠免疫治疗的时间依赖性肿瘤生长曲线和生存曲线;D.ELISA法检测血液中细胞因子IFN-γ、TNF-α、IL-6水平的动态变化;E.记忆性T细胞浸润的流式细胞术分析(CD4+CD44highCD62Llow和CD8+CD44highCD62Llow);F.用FlowJo v10软件定量分析脾脏总细胞中CD4+CD44highCD62Llow细胞和CD8+CD44highCD62Llow细胞比例;G.治愈小鼠的左后侧在第91天再次接种MC38细胞,并监测至第150天;H.2-[18F]FDG联合PD-L1单抗可增强持久免疫记忆
    PD-L1:程序性死亡受体配体1;IFN:干扰素;TNF:肿瘤坏死因子;IL:白细胞介素;*P<0.05;**P<0.01;***P<0.001;****P<0.0001

    图  2   2-[18F]FDG诱导的PD-L1上调通过NF-κB/IRF3途径介导

    A.MC38细胞与2-[18F]FDG共孵育不同时间后的细胞活力检测;B.用2-[18F]FDG (3.7 MBq) 照射MC38细胞24 h,用γH2AX和EdU染色检测DNA DSB和DNA修复水平;C、D.2-[18F]FDG激活NF-κB和IRF3信号通路的验证[56]
    PD-L1:同图 1

    图  3   2-[18F]FDG诱导的PD-L1上调与经典STAT1/3-IRF1通路相关

    A.与2-[18F]FDG共孵育24 h后肿瘤细胞中DEGs的热图;B.2-[18F]FDG激活STAT1/3和IRF1信号通路与PD-L1上调相关[56]
    PD-L1:同图 1

    表  1   近5年发表的放射性药物联合ICI治疗的临床前研究

    第一作者 放射性药物 射线类型 ICI 肿瘤类型 给药方案 TIME变化 治疗效果
    Wen[56] 2-[18F] β/γ anti-PD-L1 MC38
    CT26
    2-[18F]FDG(37 MBq)给药后4 h静脉注射anti-PD-L1 (400 μg),共2个疗程(d0, d4) PD-L1、CD8+、CD4+ T细胞上调,DCs、M1巨噬细胞上调,促炎细胞因子上调,Tregs、MDSC下调 抑制肿瘤生长,延长生存期,产生免疫记忆
    文雪君[57] 99mTc-RGD γ anti-PD-L1 MC38 99mTc-RGD(18.5或37 MBq)给药后4 h静脉注射anti-PD-L1(400 μg),共2个疗程(d0, d4) PD-L1上调 完全缓解率为75%,90 d内无复发
    Wen[32] 64Cu-DOTA-EB-cRGDfK β anti-PD-L1 MC38 TRT(18.5 MBq)后4 h静脉注射anti-PD-L1(200 μg) PD-L1上调,CD8+及CD4+ T细胞上调,Tregs下调,促炎细胞因子上调 完全缓解率为100%, 生存率为100%, 产生免疫记忆
    Wen[31] 177Lu-DOTA-EB-cRGDfK β anti-PD-L1 MC38
    CT26
    TRT(9.25 MBq)后4 h静脉注射anti-PD-L1(200 μg) PD-L1上调,CD8+及CD4+T细胞上调,Tregs下调,促炎细胞因子上调 完全缓解率为100%, 生存率为100%, 产生免疫记忆
    Wen[58] 131I-αPD-L1 β anti-PD-L1 MC38
    CT26
    TRT(11.1 MBq)与anti-PD-L1(200 μg)同时静脉注射给药 PD-L1上调 延长生存期
    Choi[36] 177Lu-LLP2A β anti-CTLA-4+anti-PD-1/PD-L1 B16F10 TRT(30 MBq)在d0给药,ICI(各200 μg)在d1、d4、d7腹腔注射给药 - 显著提高生存率
    Guzik[33] 177Lu-DOTA-folate β anti-CTLA-4 NF9006 TRT(5 MBq)在d0给药,anti-CTLA-4(200 μg)在d1、d4、d7腹腔注射给药 - 抑制肿瘤生长,延长中位生存期
    Ren[34] 177Lu-DOTA-Y003 β anti-PD-L1 MC38 TRT(3.7 MBq)在d0、d8给药,anti-PD-L1(100 μg)在d2、d4、d6、d10、d12、d14腹腔注射给药 PD-L1上调,CD8+及CD4+ T细胞上调 抑制肿瘤生长,生存率为100%
    Czernin[39] 225Ac-PSMA-617 α anti-PD-1 RM1-PGLS TRT(30 kBq)在d0给药,anti-PD-1(200 μg)在d1、d4、d8、d11腹腔注射给药 - 抑制肿瘤生长,25%完全缓解
    Vito[37] 177Lu-DNP-DOTA-BSA β anti-CTLA-4+anti-PD-L1 E0771 TRT(4.4 MBq)在d0、d4给药,ICI(各200 μg)从d2开始每3天腹腔给药1次,共10次 CD4+T细胞、巨噬细胞及MDSC下调 延长生存期
    Brown[22] 90Y-NM600 β anti-CTLA-4 LLC 在d0进行EBRT(12 Gy)以及TRT (1.85 MBq),anti-CTLA-4(200 μg)在d3、d6、d9腹腔给药 - 减少肿瘤转移,产生免疫记忆
    Rouanet[17] 131I-ICF01012 β anti-CTLA-4+anti-PD-1/PD-L1 B16F10 TRT(18.5 MBq)在d0给药,ICI(各200 μg)在d-4、d0、d4、d8腹腔给药 T细胞衰竭相关基因CD274,LAG3和Eomes增加 延长生存期
    Potluri[23] 90Y-NM600 β anti-PD-1 TRAMP-C1
    Myc-CaP
    TRT(9.25 MBq)在d0给药,anti-PD-1(200 μg)在d0、d3、d6腹腔给药 CD8+ T细胞、Tregs细胞上调,PD-L1上调 未提高疗效
    Chen[30] 177Lu-EB-RGD β anti-PD-L1 MC38 TRT(18.5 MBq)在d0给药,anti-PD-L1(200 μg)在d1、d4、d7腹腔给药 CD8+ T细胞浸润,PD-L1上调 抑制肿瘤生长,生存率为100%
    Li[47] 212Pb-VMT01 α anti-CTLA-4+anti-PD-1 B16F10 TRT(4.1 MBq)在d0给药,ICI(各200 μg)每周2次腹腔给药 CD3+、CD4+、CD8+淋巴细胞上调 43%完全缓解,延长生存期,产生免疫记忆
    Dabagian[41] 211At-MM4 α anti-PD-1 U87MG TRT(0.72 MBq)在d0给药,anti-PD-1(200 μg)在d-3、d0、d3腹腔给药 PD-L1上调,CD8+及CD4+ T细胞上调 完全缓解率为100%
    Lejeune[51] MSLN-TTC
    (227Th)
    α anti-PD-L1 MC38-hMSLN TRT(5 kBq)在d0给药,anti-PD-L1(30 μg)每周2次腹腔给药 CD8+T细胞上调,IFNγ、CCL3、CCL4、IL-2、IL-5和IL-10上调,TGF-β和FOXP3上调 58.3%完全缓解,延长生存期
    Malo[35] 177Lu-h8C3
    225Ac-h8C3
    β
    α
    anti-PD-1 Cloudman S91 177Lu(3.7 MBq)在d0、d7给药,anti-PD-1(250 μg)在d1、d4、d7腹腔给药 未观察到肿瘤T细胞浸润增加 177Lu抑制肿瘤生长,延长生存期,225Ac联合治疗无效
    Patel[19] 90Y-NM600 β anti-CTLA-4 + anti-PD-L1 B78
    NXS2
    4T1
    TRT(1.85 MBq)在d0给药,anti-CTLA-4(200 μg)在d3、d6、d9腹腔给药;EBRT (12 Gy)及TRT(1.85 MBq)在d0给药,anti-CTLA-4(200 μg)在d3、d6、d9腹腔给药 促炎细胞因子(IFN-γ, IL-10)的产生显著增加,效应T细胞浸润,联合中等剂量EBRT诱导远隔效应 显著抑制肿瘤生长,延长生存期,产生免疫记忆,原发及对侧肿瘤均缓解(46.7%完全缓解)
    Nosanchuk[48] 213Bi-8C3 α anti-CTLA-4 B16-F10 TRT(5.55 MBq),anti-CTLA-4(100 μg)在d1、d5、d7腹腔给药 - TRT及联合治疗均减少肺转移,但二者无差异
    Zhang[21] 131I- MnO2-BSA β anti-PD-L1 4T1 TRT(18.5 MBq)在d0给药,anti-PD-L1(20 μg)在d1、d3、d5腹腔给药 CTLs浸润增加,Tregs、F4/80+ TAM下调,PD-L1上调,TNF-α、IFN-γ上调 抑制原发性肿瘤和远处肿瘤生长
    Zhang[42] 211At-ATE-MnO2-BSA α anti-PD-L1 4T1
    CT26
    TRT(555 kBq)在d0给药,anti-PD-L1(75 μg)在d1、d3、d5腹腔给药 CTLs浸润增加,TNF-α、IFN-γ上调,Tregs无变化,TEM浸润增加,TCM减少 有效抑制原发性肿瘤和远处肿瘤的生长,产生了长期免疫记忆
    注:均以第一次TRT治疗为d0,d-3为TRT给药前3 d,d-4为TRT给药前4 d,所有TRT均是静脉注射给药,均估算小鼠体质量为20 g换算剂量;PD-1:程序性死亡[蛋白]-1;CTLA-4:细胞毒性T淋巴细胞抗原4;TRT:靶向放射性核素治疗;ICI:免疫检查点抑制剂;DCs:树突状细胞;Tregs:调节性T细胞;MDSC:髓源性抑制细胞;EBRT:外照射放疗;LAG3:淋巴细胞激活基因-3;CCL:趋化因子C-C-基元配体;TGF-β:转化生长因子-β;TEM:效应记忆T细胞;TCM:中央记忆T细胞;TAM:肿瘤相关巨噬细胞;CTLs:细胞毒性T淋巴细胞;FOXP3:叉头蛋白P3;Emoes:脱中胚蛋白;IFN、TNF、IL、PD-L1:同图 1
    下载: 导出CSV
  • [1]

    FDA approves anti-LAG3 checkpoint[J]. Nat Biotechnol, 2022, 40: 625.

    [2]

    Yi M, Zheng X, Niu M, et al. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions[J]. Mol Cancer, 2022, 21: 28. DOI: 10.1186/s12943-021-01489-2

    [3]

    de Miguel M, Calvo E. Clinical Challenges of Immune Checkpoint Inhibitors[J]. Cancer Cell, 2020, 38: 326-333. DOI: 10.1016/j.ccell.2020.07.004

    [4]

    Fradet Y, Bellmunt J, Vaughn DJ, et al. Randomized phase Ⅲ KEYNOTE-045 trial of pembrolizumab versus paclitaxel, docetaxel, or vinflunine in recurrent advanced urothelial cancer: results of > 2 years of follow-up[J]. Ann Oncol, 2019, 30: 970-976. DOI: 10.1093/annonc/mdz127

    [5]

    McLaughlin M, Patin EC, Pedersen M, et al. Inflammatory microenvironment remodelling by tumour cells after radiotherapy[J]. Nat Rev Cancer, 2020, 20: 203-217. DOI: 10.1038/s41568-020-0246-1

    [6]

    Pouget JP, Lozza C, Deshayes E, et al. Introduction to radiobiology of targeted radionuclide therapy[J]. Front Med (Lausanne), 2015, 2: 12.

    [7]

    Deng L, Liang H, Xu M, et al. STING-Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type Ⅰ Interferon-Dependent Antitumor Immunity in Immunogenic Tumors[J]. Immunity, 2014, 41: 843-852. DOI: 10.1016/j.immuni.2014.10.019

    [8]

    Zhang X, Zhang H, Zhang J, et al. The paradoxical role of radiation-induced cGAS-STING signalling network in tumour immunity[J]. Immunology, 2023, 168: 375-388. DOI: 10.1111/imm.13592

    [9]

    Lan Y, Moustafa M, Knoll M, et al. Simultaneous targeting of TGF-beta/PD-L1 synergizes with radiotherapy by reprogramming the tumor microenvironment to overcome immune evasion[J]. Cancer Cell, 2021, 39: 1388-403. e10. DOI: 10.1016/j.ccell.2021.08.008

    [10]

    Sha CM, Lehrer EJ, Hwang C, et al. Toxicity in combination immune checkpoint inhibitor and radiation therapy: A systematic review and meta-analysis[J]. Radiother Oncol, 2020, 151: 141-148. DOI: 10.1016/j.radonc.2020.07.035

    [11]

    Procureur A, Simonaggio A, Bibault JE, et al. Enhance the Immune Checkpoint Inhibitors Efficacy with Radiotherapy Induced Immunogenic Cell Death: A Comprehensive Review and Latest Developments[J]. Cancers (Basel), 2021, 13: 678. DOI: 10.3390/cancers13040678

    [12]

    Twyman-Saint Victor C, Rech AJ, Maity A, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer[J]. Nature, 2015, 520: 373-377. DOI: 10.1038/nature14292

    [13]

    Formenti SC, Demaria S. Systemic effects of local radiotherapy[J]. Lancet Oncol, 2009, 10: 718-726. DOI: 10.1016/S1470-2045(09)70082-8

    [14]

    Formenti SC, Rudqvist NP, Golden E, et al. Radiotherapy induces responses of lung cancer to CTLA-4 blockade[J]. Nat Med, 2018, 24: 1845-1851. DOI: 10.1038/s41591-018-0232-2

    [15]

    Kleinendorst SC, Oosterwijk E, Bussink J, et al. Combining Targeted Radionuclide Therapy and Immune Checkpoint Inhibition for Cancer Treatment[J]. Clin Cancer Res, 2022, 28: 3652-3657. DOI: 10.1158/1078-0432.CCR-21-4332

    [16]

    Sun Q, Li J, Ding Z, et al. Radiopharmaceuticals heat anti-tumor immunity[J]. Theranostics, 2023, 13: 767-786. DOI: 10.7150/thno.79806

    [17]

    Rouanet J, Benboubker V, Akil H, et al. Immune checkpoint inhibitors reverse tolerogenic mechanisms induced by melanoma targeted radionuclide therapy[J]. Cancer Immunol Immunother, 2020, 69: 2075-2088. DOI: 10.1007/s00262-020-02606-8

    [18]

    Jagodinsky JC, Jin WJ, Bates AM, et al. Temporal analysis of type 1 interferon activation in tumor cells following external beam radiotherapy or targeted radionuclide therapy[J]. Theranostics, 2021, 11: 6120-6137. DOI: 10.7150/thno.54881

    [19]

    Patel RB, Hernandez R, Carlson P, et al. Low-dose targeted radionuclide therapy renders immunologically cold tumors responsive to immune checkpoint blockade[J]. Sci Transl Med, 2021, 13: eabb3631. DOI: 10.1126/scitranslmed.abb3631

    [20]

    Grzmil M, Boersema P, Sharma A, et al. Comparative analysis of cancer cell responses to targeted radionuclide therapy (TRT) and external beam radiotherapy (EBRT)[J]. J Hematol Oncol, 2022, 15: 123. DOI: 10.1186/s13045-022-01343-y

    [21]

    Zhang J, Yang M, Fan X, et al. Biomimetic radiosensitizers unlock radiogenetics for local interstitial radiotherapy to activate systematic immune responses and resist tumor metastasis[J]. J Nanobiotechnology, 2022, 20: 103. DOI: 10.1186/s12951-022-01324-w

    [22]

    Brown R, Hernandez R, Grudzinski JJ, et al. Ability of Molecular Targeted Radionucleotide Therapy and Anti-CTLA-4 to Prevent Spontaneous Metastases in a Preclinical Lewis Lung Carcinoma Model[J]. Int J Radiat Oncol Biol Phys, 2019, 105: E498-E499.

    [23]

    Potluri HK, Ferreira CA, Grudzinski J, et al. Antitumor efficacy of 90Y-NM600 targeted radionuclide therapy and PD-1 blockade is limited by regulatory T cells in murine prostate tumors[J]. J Immunother Cancer, 2022, 10: e005060. DOI: 10.1136/jitc-2022-005060

    [24]

    Lutetium (Lu-177) Dotatate Approved by FDA[J]. Cancer Discov, 2018, 8: OF2.

    [25]

    Fallah J, Agrawal S, Gittleman H, et al. FDA Approval Summary: lutetium (Lu-177) vipivotide tetraxetan for patients with metastatic castration-resistant prostate cancer[J]. Clin Cancer Res, 2023, 29: 1651-1657. DOI: 10.1158/1078-0432.CCR-22-2875

    [26]

    Kim C, Liu SV, Subramaniam DS, et al. Phase Ⅰ study of the 177Lu-DOTA(0)-Tyr(3)-Octreotate (lutathera) in combination with nivolumab in patients with neuroendocrine tumors of the lung[J]. J Immunother Cancer, 2020, 8: e000980. DOI: 10.1136/jitc-2020-000980

    [27]

    Ferdinandus J, Fendler WP, Lueckerath K, et al. Response to Combined Peptide Receptor Radionuclide Therapy and Checkpoint Immunotherapy with Ipilimumab Plus Nivolumab in Metastatic Merkel Cell Carcinoma[J]. J Nucl Med, 2022, 63: 396-398. DOI: 10.2967/jnumed.121.262344

    [28]

    Lin AL, Tabar V, Young RJ, et al. Synergism of Checkpoint Inhibitors and Peptide Receptor Radionuclide Therapy in the Treatment of Pituitary Carcinoma[J]. J Endocr Soc, 2021, 5: bvab133. DOI: 10.1210/jendso/bvab133

    [29]

    Prasad V, Zengerling F, Steinacker JP, et al. First Experiences with 177Lu-PSMA Therapy in Combination with Pembrolizumab or After Pretreatment with Olaparib in Single Patients[J]. J Nucl Med, 2021, 62: 975-978. DOI: 10.2967/jnumed.120.249029

    [30]

    Chen H, Zhao L, Fu K, et al. Integrin αυβ3-targeted radionuclide therapy combined with immune checkpoint blockade immunotherapy synergis-tically enhances anti-tumor efficacy[J]. Theranostics, 2019, 9: 7948-7960. DOI: 10.7150/thno.39203

    [31]

    Wen XJ, Zeng XY, Shi CR, et al. Optimum combination of radiopharmaceuticals-based targeting-triggering-therapy effect and PD-L1 blockade immunotherapy[J]. Adv Ther, 2022, 6: 2200193.

    [32]

    Wen X, Zeng X, Liu J, et al. Synergism of 64Cu-Labeled RGD with Anti-PD-L1 Immunotherapy for the Long-Acting Antitumor Effect[J]. Bioconjug Chem, 2022, 33: 2170-2179. DOI: 10.1021/acs.bioconjchem.2c00408

    [33]

    Guzik P, Siwowska K, Fang HY, et al. Promising potential of [177Lu]Lu-DOTA-folate to enhance tumor response to immunotherapy-a preclinical study using a syngeneic breast cancer model[J]. Eur J Nucl Med Mol Imaging, 2021, 48: 984-994. DOI: 10.1007/s00259-020-05054-9

    [34]

    Ren J, Xu M, Chen J, et al. PET imaging facilitates antibody screening for synergistic radioimmunotherapy with a 177Lu-labeled alphaPD-L1 antibody[J]. Theranostics, 2021, 11: 304-315. DOI: 10.7150/thno.45540

    [35]

    Malo ME, Allen KJH, Jiao R, et al. Mechanistic Insights into Synergy between Melanin-Targeting Radioimmun-otherapy and Immunotherapy in Experimental Melanoma[J]. Int J Mol Sci, 2020, 21: 8721. DOI: 10.3390/ijms21228721

    [36]

    Choi J, Beaino W, Fecek RJ, et al. Combined VLA-4-Targeted Radionuclide Therapy and Immunotherapy in a Mouse Model of Melanoma[J]. J Nucl Med, 2018, 59: 1843-1849. DOI: 10.2967/jnumed.118.209510

    [37]

    Vito A, Rathmann S, Mercanti N, et al. Combined Radionuclide Therapy and Immunotherapy for Treatment of Triple Negative Breast Cancer[J]. Int J Mol Sci, 2021, 22: 4843. DOI: 10.3390/ijms22094843

    [38]

    Stap J, Krawczyk PM, Van Oven CH, et al. Induction of linear tracks of DNA double-strand breaks by alpha-particle irradiation of cells[J]. Nat Methods, 2008, 5: 261-266. DOI: 10.1038/nmeth.f.206

    [39]

    Czernin J, Current K, Mona CE, et al. Immune-Checkpoint Blockade Enhances 225Ac-PSMA617 Efficacy in a Mouse Model of Prostate Cancer[J]. J Nucl Med, 2021, 62: 228-231. DOI: 10.2967/jnumed.120.246041

    [40]

    Josefsson A, Nedrow JR, Park S, et al. Combining alpha-particle radiopharmaceutical therapy using Actinium-225 and immunotherapy with anti-PD-L1 antibodies in a murine immunocompetent metastatic breast cancer model[J]. Cancer Res, 2016, 76: 3052. DOI: 10.1158/1538-7445.AM2016-3052

    [41]

    Dabagian H, Taghvaee T, Martorano P, et al. PARP Targeted Alpha-Particle Therapy Enhances Response to PD-1 Immune-Checkpoint Blockade in a Syngeneic Mouse Model of Glioblastoma[J]. ACS Pharmacol Transl Sci, 2021, 4: 344-351. DOI: 10.1021/acsptsci.0c00206

    [42]

    Zhang J, Li F, Yin Y, et al. Alpha radionuclide-chelated radioimmunotherapy promoters enable local radiotherapy/chemodynamic therapy to discourage cancer progression[J]. Biomater Res, 2022, 26: 44. DOI: 10.1186/s40824-022-00290-6

    [43]

    Malamas AS, Gameiro SR, Knudson KM, et al. Sublethal exposure to alpha radiation 223Ra dichloride) enhances various carcinomas' sensitivity to lysis by antigen-specific cytotoxic T lymphocytes through calreticulin-mediated immunogenic modulation[J]. Oncotarget, 2016, 7: 86937-86947. DOI: 10.18632/oncotarget.13520

    [44]

    Creemers JHA, van der Doelen MJ, van Wilpe S, et al. Immunophenotyping Reveals Longitudinal Changes in Circulating Immune Cells During Radium-223 Therapy in Patients With Metastatic Castration-Resistant Prostate Cancer[J]. Front Oncol, 2021, 11: 667658. DOI: 10.3389/fonc.2021.667658

    [45]

    Vardaki I, Corn P, Gentile E, et al. Radium-223 Treatment Increases Immune Checkpoint Expression in Extracellular Vesicles from the Metastatic Prostate Cancer Bone Microenvironment[J]. Clin Cancer Res, 2021, 27: 3253-3264. DOI: 10.1158/1078-0432.CCR-20-4790

    [46]

    Fong L, Morris MJ, Sartor O, et al. A Phase Ib Study of Atezolizumab with Radium-223 Dichloride in Men with Metastatic Castration-Resistant Prostate Cancer[J]. Clin Cancer Res, 2021, 27: 4746-4756. DOI: 10.1158/1078-0432.CCR-21-0063

    [47]

    Li M, Liu D, Lee D, et al. Targeted Alpha-Particle Radiotherapy and Immune Checkpoint Inhibitors Induces Cooperative Inhibition on Tumor Growth of Malignant Melanoma[J]. Cancers (Basel), 2021, 13: 3676. DOI: 10.3390/cancers13153676

    [48]

    Nosanchuk JD, Jeyakumar A, Ray A, et al. Structure-function analysis and therapeutic efficacy of antibodies to fungal melanin for melanoma radioimmunotherapy[J]. Sci Rep, 2018, 8: 5466. DOI: 10.1038/s41598-018-23889-z

    [49]

    Perrin J, Capitao M, Allard M, et al. Targeted Alpha Particle Therapy Remodels the Tumor Microenvironment and Improves Efficacy of Immunotherapy[J]. Int J Radiat Oncol Biol Phys, 2022, 112: 790-801. DOI: 10.1016/j.ijrobp.2021.10.013

    [50]

    Gorin JB, Menager J, Gouard S, et al. Antitumor immunity induced after alpha irradiation[J]. Neoplasia, 2014, 16: 319-328. DOI: 10.1016/j.neo.2014.04.002

    [51]

    Lejeune P, Cruciani V, Berg-Larsen A, et al. Immunostimulatory effects of targeted thorium-227 conjugates as single agent and in combination with anti-PD-L1 therapy[J]. J Immunother Cancer, 2021, 9: e002387. DOI: 10.1136/jitc-2021-002387

    [52]

    Hagemann UB, Ellingsen C, Schuhmacher J, et al. Mesothelin-Targeted Thorium-227 Conjugate (MSLN-TTC): Preclinical Evaluation of a New Targeted Alpha Therapy for Mesothelin-Positive Cancers[J]. Clin Cancer Res, 2019, 25: 4723-4734. DOI: 10.1158/1078-0432.CCR-18-3476

    [53]

    Moadel RM, Nguyen AV, Lin EY, et al. Positron emission tomography agent 2-deoxy-2-[18F]fluoro-D-glucose has a therapeutic potential in breast cancer[J]. Breast Cancer Res, 2003, 5: R199-R205. DOI: 10.1186/bcr643

    [54]

    Moadel RM, Weldon RH, Katz EB, et al. Positherapy: targeted nuclear therapy of breast cancer with 18F-2-deoxy-2-fluoro-D-glucose[J]. Cancer Res, 2005, 65: 698-702. DOI: 10.1158/0008-5472.698.65.3

    [55]

    Fang S, Wang J, Jiang H, et al. Experimental study on the therapeutic effect of positron emission tomography agent[18F]-labeled 2-deoxy-2-fluoro-d-glucose in a colon cancer mouse model[J]. Cancer Biother Radiopharm, 2010, 25: 733-740.

    [56]

    Wen X, Shi C, Zeng X, et al. A Paradigm of Cancer Immunotherapy Based on 2-[18F]FDG and Anti-PD-L1 mAb Combination to Enhance the Antitumor Effect[J]. Clin Cancer Res, 2022, 28: 2923-2937. DOI: 10.1158/1078-0432.CCR-22-0159

    [57] 文雪君, 周吴昊, 郭志德, 等. 整合素αυβ3靶向放射性药物99mTc-RGD联合抗PD-L1肿瘤免疫治疗增强抗肿瘤效果的研究[J]. 协和医学杂志, 2023, 14: 766-773. DOI: 10.12290/xhyxzz.2023-0155
    [58]

    Wen X, Zeng X, Cheng X, et al. PD-L1-Targeted Radionuclide Therapy Combined with alpha PD-L1 Antibody Immunotherapy Synergistically Improves the Antitumor Effect[J]. Mol Pharm, 2022, 19: 3612-3622. DOI: 10.1021/acs.molpharmaceut.2c00281

    [59]

    Gutfilen B, Souza SA, Valentini G. Copper-64: a real theranostic agent[J]. Drug Des Devel Ther, 2018, 12: 3235-3245. DOI: 10.2147/DDDT.S170879

图(3)  /  表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-28
  • 录用日期:  2023-04-16
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2023-07-29

目录

/

返回文章
返回
x 关闭 永久关闭