Citation: | ZHOU Yanyan, DENG Yang, BAO Ji, BU Hong. Trusted Artificial Intelligence for Pathology: From Theory to Practice[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(4): 525-529. DOI: 10.12290/xhyxzz.2022-0184 |
[1] |
Li BH, Hou BC, Yu WT, et al. Applications of artificial intelligence in intelligent manufacturing: a review[J]. Front Inform Technol Electron Eng, 2017, 18: 86-96. DOI: 10.1631/FITEE.1601885
|
[2] |
Rajpurkar P, Chen E, Banerjee O, et al. AI in health and medicine[J]. Nat Med, 2022, 28: 31-38. DOI: 10.1038/s41591-021-01614-0
|
[3] |
European Commission. White Paper On Artificial Intelli-gence-A European approach to excellence and trust[EB/OL]. (2020-02-19)[2022-04-05]. https://ec.europa.eu/info/sites/info/files/commission-white-paper-artificial-intelligence-feb2020_en.pdf.
|
[4] |
中国信息通信研究院. 可信人工智能白皮书[EB/OL]. (2021-07-09)[2022-04-05]. http://www.caict.ac.cn/k-xyj/qwfb/bps/202107/P020210709319866413974.pdf.
|
[5] |
Parwani A. Whole Slide Imaging[M]. Switzerland: Springer Nature Switzerland AG, 2022: 223-236.
|
[6] |
Willemink MJ, Koszek WA, Hardell C, et al. Preparing Medical Imaging Data for Machine Learning[J]. Radiology, 2020, 295: 4-15. DOI: 10.1148/radiol.2020192224
|
[7] |
European Commission. General Data Protection Regulation[EB/OL]. (2016-04-27)[2022-04-05]. https://gdpr.eu/article-1-subject-matter-and-objectives-overview/.
|
[8] |
Law Reform Commission. Hong Kong Person Date Privacy Ordinance[EB/OL]. (2012-10-01)[2022-04-05]. https://www.pcpd.org.hk/english/data_privacy_law/ordinance_at_a_Glance/ordinance.html.
|
[9] |
Kaissis GA, Makowski MR, Rückert D, et al. Secure, privacy-preserving and federated machine learning in medical imaging[J]. Nat Machine Intel, 2020, 2: 305-311. DOI: 10.1038/s42256-020-0186-1
|
[10] |
Zhou SK, Greenspan H, Davatzikos C, et al. A Review of Deep Learning in Medical Imaging: Imaging Traits, Technology Trends, Case Studies With Progress Highlights, and Future Promises[J]. Proc IEEE Inst Electr Electron Eng, 2021, 109: 820-838. DOI: 10.1109/JPROC.2021.3054390
|
[11] |
刘再毅, 石镇维, 梁长虹. 推进联邦学习技术在医学影像人工智能中的应用[J]. 中华医学杂志, 2022, 102: 318-320.
Liu ZY, Shi ZW, Liang CH. Promoting the application of federated learning in medical imaging artificial intelligence[J]. Zhonghua Yixue Zazhi, 2022, 102: 318-320.
|
[12] |
Yang D, Xu Z, Li WQ, et al. Federated Semi-Supervised Learning for COVID Region Segmentation in Chest CT using Multi-National Data from China, Italy, Japan[J]. Med Image Anal, 2021, 70: e101992. DOI: 10.1016/j.media.2021.101992
|
[13] |
Lu MY, Chen RJ, Kong DH, et al. Federated learning for computational pathology on gigapixel whole slide images[J]. Med Image Anal, 2022, 76: e102298. DOI: 10.1016/j.media.2021.102298
|
[14] |
Du MN, Liu NH, Hu X. Techniques for Interpretable Machine Learning[J]. Commun ACM, 2020, 63: 68-77.
|
[15] |
Selvaraju RR, Cogswell M, Das A, et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization[J]. Int J Comput Vis, 2020, 128: 336-359. DOI: 10.1007/s11263-019-01228-7
|
[16] |
Yu K, Wang F, Berry GJ, et al. Classifying non-small cell lung cancer types and transcriptomic subtypes using convolutional neural networks[J]. J Am Med Inform Assoc, 2020, 27: 757-769. DOI: 10.1093/jamia/ocz230
|
[17] |
Sousa I, Vellasco M, Silva E. Local Interpretable Model-Agnostic Explanations for Classification of Lymph Node Metastases[J]. Sensors, 2019, 19: 1-18. DOI: 10.1109/JSEN.2019.2912688
|
[18] |
Saporta A, Gui XT, Agrawal A, et al. Deep learning saliency maps do not accurately highlight diagnostically relevant regions for medical image interpretation[J]. MedRxiv, 2021. https://doi.org/10.1101/2021.02.28.21252634.
|
[19] |
Ehsan U, Passi S, Liao QV, et al. The Who in Explainable AI: How AI Background Shapes Perceptions of AI Explanations[J]. Arxiv, 2021. https://arxiv.org/abs/2107.13509.
|
[20] |
Li X, Dvornek NC, Zhou Y, et al. Efficient Interpretation of Deep Learning Models Using Graph Structure and Coopera-tive Game Theory: Application to ASD Biomarker Discovery[J]. Inf Process Med Imaging, 2019, 11492: 718-730.
|
[21] |
Li X, Zhou Y, Dvornek NC, et al. Efficient Shapley Explana-tion for Features Importance Estimation Under Uncertainty[J]. Med Image Comput Assist Interv, 2020, 12261: 792-801.
|
[22] |
Sarder SP. From What to Why, the Growing Need for a Focus Shift Toward Explainability of AI in Digital Pathology[J]. Front Physiol, 2022, 12: e821217.
|
[23] |
Hegde N, Hipp JD, Liu Y, et al. Similar Image Search for Histopathology: SMILY[J]. NPJ Digit Med, 2019, 2: 56-65.
|
[24] |
Li X, Duncan J. BrainGNN: Interpretable Brain Graph Neural Network for fMRI Analysis[J]. Med Image Anal, 2021, 74, e102233.
|
[25] |
Li X, Zhou Y, Dvornek NC, et al. Pooling Regularized Graph Neural Network for fMRI Biomarker Analysis[J]. Med Image Comput Assist Interv, 2020, 12267: 625-635.
|
[26] |
Amit S. Introducing the knowledge graph[R]. America: Official Blog of Google, 2012.
|
[27] |
崔洁. 面向乳腺肿瘤诊断的知识图谱及辅助决策研究[D]. 上海: 东华大学, 2018.
|
1. |
王建新,孙明月,吕行,郭曼萍,代欣玥,杨巧宁,申春悌,元唯安,王天芳,连凤梅,刘树林,张磊,谢雁鸣,王忠,王保和,黄宇虹,刘文娜,高蕊. 中医证候疗效评价量表研制指南. 中国新药杂志. 2025(02): 113-122 .
![]() | |
2. |
唐晓颇,姜泉. 基于临床需求的干燥综合征诊疗体系构建与示范应用. 中国中医基础医学杂志. 2025(02): 231-235 .
![]() | |
3. |
杨一玖,张海力,刘斌,梁宁,李慧珍,宋填,曹文杰,胡紫腾,马厚芳,王燕平,韩晟,史楠楠. 中成药特征价格变量指标体系构建研究. 中国卫生经济. 2025(02): 18-23 .
![]() | |
4. |
薛飞飞,郝闻致,陈家旭. 层次分析法在中医证候标准化研究的应用探讨. 中华中医药杂志. 2025(01): 271-274 .
![]() | |
5. |
刘誉,张鹏,尚俊杰. 基于德尔菲法的教师学习科学素养框架构建研究. 现代教育技术. 2025(04): 91-101 .
![]() | |
6. |
潘轶竹,郭默宁,蒋锋,李晓虹,王明刚,肖存利. DRGs背景下基于改良德尔菲法的精神专科医院医疗绩效评价指标体系构建研究. 中国医疗管理科学. 2024(01): 105-111 .
![]() | |
7. |
刘晓雨,刘志华,李京璠,李润泽,王玉曼,薛滨清,张心千,杨倩,杜艳茹. 浊毒证诊断量表的研制与权重赋值——基于德尔菲法及层次分析法. 中医杂志. 2024(07): 684-690 .
![]() | |
8. |
胡卓慕,吴进,方玢茹,毛旭,郭莉萍,朱利明. 《中国叙事医学专家共识(2023)》的德尔菲法研究. 叙事医学. 2024(02): 105-112 .
![]() | |
9. |
黄栖,唐乐微,刘茹茹,林丹,黄佳丽,彭雯清,李一靖,陈燕燕,王毓琴. 基于德尔菲法初步构建急性前葡萄膜炎患者报告结局量表. 中华眼视光学与视觉科学杂志. 2024(07): 507-515 .
![]() | |
10. |
王雅琪,高一城,苏澄元,刘美君,李迅,费宇彤. 临床实践指南中临床问题结构化分级及评价. 中国循证医学杂志. 2024(07): 827-831 .
![]() | |
11. |
梁昌昊,尹丁冉,刘美君,尹冠翔,李迅,王雅琪,刘思岐,佟敏,刘鹏伟,苏祥飞,费宇彤. 中医药指南制订中共识法应用关键要素的定性研究. 协和医学杂志. 2024(04): 942-952 .
![]() | |
12. |
车前子,郭敬,佟琳,蔡秋杰,陈琳,李慧珍,张海力,郑丹平,胡明智,宋填,程翠翠,蒋寅,刘晨曦,胡妮娜,张华敏,史楠楠. 基于人用经验的中药新药临床定位研究策略与方法. 中国中医基础医学杂志. 2024(08): 1337-1340 .
![]() | |
13. |
赵越,李宵,薛朝军,白万军,董占军. 医疗机构静脉用药评价与遴选专家共识. 医药导报. 2024(09): 1369-1375 .
![]() | |
14. |
彭蓉晏,孙凌云,刘稼玺,庞英,王子旭,唐末,丁亚丛,梁昌昊,唐丽丽,杨宇飞. 基于改良德尔菲法构建《早中期结直肠癌根治术后中西医结合心理康复干预指南》临床问题. 中国中西医结合杂志. 2024(08): 912-920 .
![]() | |
15. |
马思成,张宸铭,唐硕彤,郝晓慧,刘稳榜,马瑞敏,胡静,王祖龙,孙自学. 中医药治疗精子DNA损伤的德尔菲研究. 中华男科学杂志. 2024(09): 854-860 .
![]() | |
16. |
周旋,方格,马庆宇,李晓娟,李永欣,胡志希,李先涛,陈家旭. 基于德尔菲法和层次分析法的气滞证诊断条目筛选及权重确定. 中医杂志. 2024(21): 2211-2216 .
![]() | |
17. |
吴雪,王文雅,廖星,王永炎. 中医药卫生技术评估实施规范的构建与内容介绍. 中国中药杂志. 2024(20): 5643-5651 .
![]() | |
18. |
孟庆莉,姜德春,李达,纪立伟,刘宪军,冀召帅,陶小妹,王海莲,于晓佳,贾自力,张景富,陈世财,顾红燕. 北京地区基层医疗机构药物治疗管理服务门诊工作实施评价体系构建——基于德尔菲法和层次分析法. 中国医院药学杂志. 2024(24): 2909-2914 .
![]() | |
19. |
中国医师协会外科医师分会肥胖代谢病综合管理与护理专家工作组,中国医师协会外科医师分会肥胖和代谢病外科专家工作组,中国肥胖代谢外科研究协作组. 肥胖代谢外科医学科普中国专家共识(2024版). 中华消化外科杂志. 2024(12): 1471-1478 .
![]() | |
20. |
张红银,朱红梅,张慧琴,姚宏文,朱桂荣,李琳. 云南省静脉用药调配中心工作人员细胞毒药物职业暴露及防护调查分析. 昆明医科大学学报. 2023(07): 105-112 .
![]() | |
21. |
张佳佳,杨超,杜世豪,陈晟,杜朔,赵吉平. 基于制定WFAS《女性尿失禁临床实践指南》探讨改良德尔菲法在针灸指南推荐意见研制过程中的应用价值. 中国针灸. 2023(12): 1449-1453 .
![]() |