Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Applied Mathematics and Mechanics
  3. Article

Nonlinear metamaterial enabled aeroelastic vibration reduction of a supersonic cantilever wing plate

  • Open access
  • Published: 30 September 2024
  • Volume 45, pages 1749–1772, (2024)
  • Cite this article
Download PDF

You have full access to this open access article

Applied Mathematics and Mechanics Aims and scope Submit manuscript
Nonlinear metamaterial enabled aeroelastic vibration reduction of a supersonic cantilever wing plate
Download PDF
  • Peng Sheng1,
  • Xin Fang1,
  • Dianlong Yu1 &
  • …
  • Jihong Wen1 
  • 706 Accesses

  • Explore all metrics

Abstract

The violent vibration of supersonic wings threatens aircraft safety. This paper proposes the strongly nonlinear acoustic metamaterial (NAM) method to mitigate aeroelastic vibration in supersonic wing plates. We employ the cantilever plate to simulate the practical behavior of a wing. An aeroelastic vibration model of the NAM cantilever plate is established based on the mode superposition method and a modified third-order piston theory. The aerodynamic properties are systematically studied using both the timedomain integration and frequency-domain harmonic balance methods. While presenting the flutter and post-flutter behaviors of the NAM wing, we emphasize more on the pre-flutter broadband vibration that is prevalent in aircraft. The results show that the NAM method can reduce the low-frequency and broadband pre-flutter steady vibration by 50%–90%, while the post-flutter vibration is reduced by over 95%, and the critical flutter velocity is also slightly delayed. As clarified, the significant reduction arises from the bandgap, chaotic band, and nonlinear resonances of the NAM plate. The reduction effect is robust across a broad range of parameters, with optimal performance achieved with only 10% attached mass. This work offers a novel approach for reducing aeroelastic vibration in aircraft, and it expands the study of nonlinear acoustic/elastic metamaterials.

Article PDF

Download to read the full article text

Similar content being viewed by others

Mitigating aeroelastic vibration of strongly nonlinear metamaterial supersonic wings under high temperature

Article 21 September 2024

Flutter control and mitigation of limit cycle oscillations in aircraft wings using distributed vibration absorbers

Article 19 October 2021

An efficient modeling methodology of piezoaeroviscoelastic systems for vibration-based energy harvesting and subsonic flutter suppression

Article 03 February 2025

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Aeroacoustics
  • Computational Solid Mechanics
  • Engineering Acoustics
  • Metamaterials
  • SAXS
  • Turbomachines
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. LI, H., WU, S., CHEN, Q., and FEI, Q. Design of dynamic absorbers to control the flexural resonant vibration of structures characterized by multiple natural modes. Journal of Sound and Vibration, 513, 116415 (2021)

    Article  Google Scholar 

  2. LU, S. F., JIANG, Y., ZHANG, W., and SONG, X. J. Vibration suppression of cantilevered piezoelectric laminated composite rectangular plate subjected to aerodynamic force in hygrothermal environment. European Journal of Mechanics-A/Solids, 83, 104002 (2020)

    Article  MathSciNet  Google Scholar 

  3. CHAI, Y., GAO, W., ANKAY, B., LI, F., and ZHANG, C. Aeroelastic analysis and flutter control of wings and panels: a review. International Journal of Mechanical System Dynamics, 1(1), 5–34 (2021)

    Article  Google Scholar 

  4. ZHU, Y., YAO, G., WANG, M., GAO, K., and HOU, Q. A new pre-stretching method to increase critical flutter dynamic pressure of heated panel in supersonic airflow. Mathematics, 10(23), 4506 (2022)

    Article  Google Scholar 

  5. JONSSON, E., RISO, C., LUPP, C. A., CESNIK, C. E. S., MARTINS, J. R. R. A., and EPUREANU, B. I. Flutter and post-flutter constraints in aircraft design optimization. Progress in Aerospace Sciences, 109, 100537 (2019)

    Article  Google Scholar 

  6. FERNANDES, R. R. and TAMIJANI, A. Y. Flutter analysis of laminated curvilinear-stiffened plates. AIAA Journal, 55(3), 998–1011 (2017)

    Article  Google Scholar 

  7. ZHAO, H. and CAO, D. A study on the aero-elastic flutter of stiffened laminated composite panel in the supersonic flow. Journal of Sound and Vibration, 332(19), 4668–4679 (2013)

    Article  Google Scholar 

  8. KURUP, M. and PITCHAIMANI, J. Aeroelastic flutter of triply periodic minimal surface (TPMS) beams. Composites Part C: Open Access, 10, 100349 (2023)

    Google Scholar 

  9. KOU, J. and ZHANG, W. Data-driven modeling for unsteady aerodynamics and aeroelasticity. Progress in Aerospace Sciences, 125, 100725 (2021)

    Article  Google Scholar 

  10. MOTE, C. D. Aerodynamically excited vibration and flutter of a thin disk rotating at supercritical speed. Journal of Sound and Vibration, 168(1), 15–30 (1993)

    Article  Google Scholar 

  11. TONG, X. D., CHEN, H. Y., and CHEN, Y. Low frequency broadband noise radiated by highly skewed propeller ingesting inflow turbulence. Journal of Sound and Vibration, 490, 115709 (2021)

    Article  Google Scholar 

  12. SONG, X., JIN, G., YE, T., and ZHONG, S. A formulation for turbulent-flow-induced vibration of elastic plates with general boundary conditions. International Journal of Mechanical Sciences, 205, 106602 (2021)

    Article  Google Scholar 

  13. AJAJ, R. M., PARANCHEERIVILAKKATHIL, M. S., AMOOZGAR, M., FRISWELL, M. I., and CANTWELL, W. J. Recent developments in the aeroelasticity of morphing aircraft. Progress in Aerospace Sciences, 120, 100682 (2021)

    Article  Google Scholar 

  14. LI, P., YANG, Z., and TIAN, W. Nonlinear aeroelastic analysis and active flutter control of functionally graded piezoelectric material plate. Thin-Walled Structures, 183, 110323 (2023)

    Article  Google Scholar 

  15. XUE, Y., LI, J., LI, F., and SONG, Z. Flutter and thermal buckling properties and active control of functionally graded piezoelectric material plate in supersonic airflow. Acta Mechanica Solida Sinica, 33(5), 692–706 (2020)

    Article  Google Scholar 

  16. DONNELL, K. O., SCHOBER, S., STOLK, M., MARZOCCA, P., BREUKER, R., ABDALLA, M., NICOLINI, E., and GÜRDAL, Z. Active aeroelastic control aspects of an aircraft wing by using synthetic jet actuators: modeling, simulations, experiments. Proceedings of SPIE, 6523(1), 652309 (2007)

    Article  Google Scholar 

  17. MOREIRA, J. A., MOLEIRO, F., ARAÚJO, A. L., and PAGANI, A. Analytical modeling of panel flutter and active control in supersonic variable stiffness composite laminates. Mechanics of Advanced Materials and Structures, 30(5), 930–944 (2023)

    Article  Google Scholar 

  18. BERNELLI-ZAZZERA, F., MANTEGAZZA, P., MAZZONI, G., and RENDINA, M. Active flutter suppression using recurrent neural networks. Journal of Guidance, Control, and Dynamics, 23(6), 1030–1036 (2000)

    Article  Google Scholar 

  19. REZAEE, M., JAHANGIRI, R., and SHABANI, R. Robust adaptive fuzzy sliding mode control of nonlinear uncertain MIMO fluttering FGP plate based on feedback linearization. Aerospace Science and Technology, 91, 391–409 (2019)

    Article  Google Scholar 

  20. SHIVASHANKAR, P. and GOPALAKRISHNAN, S. Review on the use of piezoelectric materials for active vibration, noise, and flow control. Smart Materials and Structures, 29(5), 53001 (2020)

    Article  Google Scholar 

  21. LIN, H., SHAO, C., and CAO, D. Nonlinear flutter and random response of composite panel embedded in shape memory alloy in thermal-aero-acoustic coupled field. Aerospace Science and Technology, 100, 105785 (2020)

    Article  Google Scholar 

  22. TSUSHIMA, N. and SU, W. Flutter suppression for highly flexible wings using passive and active piezoelectric effects. Aerospace Science and Technology, 65, 78–89 (2017)

    Article  Google Scholar 

  23. KASSEM, M., YANG, Z., GU, Y., WANG, W., and SAFWAT, E. Active dynamic vibration absorber for flutter suppression. Journal of Sound and Vibration, 469, 115110 (2020)

    Article  Google Scholar 

  24. PEIKKHOSH, S. P., DARDEL, M., and GHASEMI, M. H. Enhancing bandwidth of metamaterial plate with linear and nonlinear passive absorbers. International Journal of Non-Linear Mechanics, 135, 103769 (2021)

    Article  Google Scholar 

  25. CHEN, J., ZHANG, W., YAO, M., LIU, J., and SUN, M. Vibration reduction in truss core sandwich plate with internal nonlinear energy sink. Composite Structures, 193, 180–188 (2018)

    Article  Google Scholar 

  26. HUANG, X. and YANG, B. Towards novel energy shunt inspired vibration suppression techniques: principles, designs and applications. Mechanical Systems and Signal Processing, 182, 109496 (2023)

    Article  Google Scholar 

  27. VERSTRAELEN, E., HABIB, G., KERSCHEN, G., and DIMITRIADIS, G. Experimental passive flutter suppression using a linear tuned vibration absorber. AIAA Journal, 55(5), 1707–1722 (2017)

    Article  Google Scholar 

  28. BAB, S., KHADEM, S. E., SHAHGHOLI, M., and ABBASI, A. Vibration attenuation of a continuous rotor-blisk-journal bearing system employing smooth nonlinear energy sinks. Mechanical Systems and Signal Processing, 84, 128–157 (2017)

    Article  Google Scholar 

  29. ZANG, J., ZHANG, Y., DING, H., YANG, T. Z., and CHEN, L. Q. The evaluation of a nonlinear energy sink absorber based on the transmissibility. Mechanical Systems and Signal Processing, 125, 99–122 (2019)

    Article  Google Scholar 

  30. ZHANG, Y., ZHANG, H., HOU, S., XU, K., and CHEN, L. Q. Vibration suppression of composite laminated plate with nonlinear energy sink. Acta Astronautica, 123, 109–115 (2016)

    Article  Google Scholar 

  31. PACHECO, D. R. Q., MARQUES, F. D., and FERREIRA, A. J. M. Panel flutter suppression with nonlinear energy sinks: numerical modeling and analysis. International Journal of Non-Linear Mechanics, 106, 108–114 (2018)

    Article  Google Scholar 

  32. ZHANG, Y., SU, C., NI, Z., ZANG, J., and CHEN, L. Q. A multifunctional lattice sandwich structure with energy harvesting and nonlinear vibration control. Composite Structures, 221, 110875 (2019)

    Article  Google Scholar 

  33. KRUSHYNSKA, A., TORRENT, D., ARAGÓN, A. M., ARDITO, R., and BILAL, O. R. Emerging topics in nanophononics and elastic, acoustic, and mechanical metamaterials: an overview. Nanophotonics, 12(4), 659–686 (2023)

    Article  Google Scholar 

  34. FANG, X., WEN, J., CHENG, L., YU, D., ZHANG, H., and GUMBSCH, P. Programmable gear-based mechanical metamaterials. Nature Materials, 21(8), 869–876 (2022)

    Article  Google Scholar 

  35. SIROTA, L., SABSOVICH, D., LAHINI, Y., ILAN, R., and SHOKEF, Y. Real-time steering of curved sound beams in a feedback-based topological acoustic metamaterial. Mechanical Systems and Signal Processing, 153, 107479 (2021)

    Article  Google Scholar 

  36. LEE, S. H., PARK, C. M., SEO, Y. M., WANG, Z. G., and KIM, C. K. Composite acoustic medium with simultaneously negative density and modulus. Physical Review Letters, 104(5), 54301 (2010)

    Article  Google Scholar 

  37. LIU, Z., ZHANG, X., MAO, Y., ZHU, Y. Y., YANG, Z., CHAN, C. T., and SHENG, P. Locally resonant sonic materials. Science, 289(5485), 1734–1736 (2000)

    Article  Google Scholar 

  38. LI, H., HU, Y., HUANG, H., CHEN, J., ZHAO, M., and LI, B. Broadband low-frequency vibration attenuation in 3D printed composite meta-lattice sandwich structures. Composites Part B: Engineering, 215, 108772 (2021)

    Article  Google Scholar 

  39. BOSIA, F., POGGETTO, V. F., GLIOZZI, A. S., GRECO, G., LOTT, M., MINIACI, M., ONGARO, F., and ONORATO, M. Optimized structures for vibration attenuation and sound control in nature: a review. Matter, 5(10), 3311–3340 (2022)

    Article  Google Scholar 

  40. CHEN, D., ZI, H., LI, Y., and LI, X. Low frequency ship vibration isolation using the band gap concept of sandwich plate-type elastic metastructures. Ocean Engineering, 235, 109460 (2021)

    Article  Google Scholar 

  41. DENG, J., GUASCH, O., MAXIT, L., and GAO, N. Sound radiation and non-negative intensity of a metaplate consisting of an acoustic black hole plus local resonators. Composite Structures, 304, 116423 (2023)

    Article  Google Scholar 

  42. BASTA, E., GHOMMEM, M., and EMAM, S. Flutter control and mitigation of limit cycle oscillations in aircraft wings using distributed vibration absorbers. Nonlinear Dynamics, 106(3), 1975–2003 (2021)

    Article  Google Scholar 

  43. MICHELIS, T., PUTRANTO, A. B., and KOTSONIS, M. Attenuation of Tollmien-Schlichting waves using resonating surface-embedded phononic crystals. Physics of Fluids, 35(4), 44101 (2023)

    Article  Google Scholar 

  44. LIU, Y., DUAN, J., GAO, Y., and XU, B. Nonlinear supersonic aerothermoelastic analysis of asymmetrically curved-fiber composite panels with nonuniform temperature distributions. Journal of Mechanical Science and Technology, 37(3), 1325–1337 (2023)

    Article  Google Scholar 

  45. TIAN, W., ZHAO, T., and YANG, Z. Theoretical modelling and design of metamaterial stiffened plate for vibration suppression and supersonic flutter. Composite Structures, 282, 115010 (2022)

    Article  Google Scholar 

  46. HE, Z. C., XIAO, X., and LI, E. Design for structural vibration suppression in laminate acoustic metamaterials. Composites Part B: Engineering, 131, 237–252 (2017)

    Article  Google Scholar 

  47. SHENG, P., FANG, X., WEN, J., and YU, D. Vibration properties and optimized design of a nonlinear acoustic metamaterial beam. Journal of Sound and Vibration, 492, 115739 (2021)

    Article  Google Scholar 

  48. DUAN, Z. L., CUI, J. G., CHEN, L. Q., and YANG, T. Z. Nonlinear mechanical roton. Journal of Applied Mechanics, 90(3), 031010 (2023)

    Article  Google Scholar 

  49. PATIL, G. U. and MATLACK, K. H. Review of exploiting nonlinearity in phononic materials to enable nonlinear wave responses. Acta Mechanica, 233(1), 1–46 (2022)

    Article  MathSciNet  Google Scholar 

  50. WANG, K., ZHOU, J., WANG, Q., OUYANG, H., and XU, D. Low-frequency band gaps in a metamaterial rod by negative-stiffness mechanisms: design and experimental validation. Applied Physics Letters, 114(25), 251902 (2019)

    Article  Google Scholar 

  51. BUKHARI, M. and BARRY, O. Spectro-spatial analyses of a nonlinear metamaterial with multiple nonlinear local resonators. Nonlinear Dynamics, 99(2), 1539–1560 (2020)

    Article  Google Scholar 

  52. FANG, X., WEN, J., BONELLO, B., YIN, J., and YU, D. Ultra-low and ultra-broad-band nonlinear acoustic metamaterials. Nature Communications, 8(1), 1288 (2017)

    Article  Google Scholar 

  53. FANG, X., WEN, J., YU, D., and YIN, J. Bridging-coupling band gaps in nonlinear acoustic metamaterials. Physical Review Applied, 10(5), 034032 (2018)

    Article  Google Scholar 

  54. FANG, X., WEN, J., BENISTY, H., and YU, D. Ultrabroad acoustical limiting in nonlinear metamaterials due to adaptive-broadening band-gap effect. Physical Review B, 101(10), 104304 (2020)

    Article  Google Scholar 

  55. FANG, X., SHENG, P., WEN, J., CHEN, W., and CHENG, L. A nonlinear metamaterial plate for suppressing vibration and sound radiation. International Journal of Mechanical Sciences, 228, 107473 (2022)

    Article  Google Scholar 

  56. ZHAO, T., YANG, Z., and TIAN, W. Tunable nonlinear metastructure with periodic bi-linear oscillators for broadband vibration suppression. Thin-Walled Structures, 191, 110975 (2023)

    Article  Google Scholar 

  57. TIAN, W., ZHAO, T., and YANG, Z. Supersonic meta-plate with tunable-stiffness nonlinear oscillators for nonlinear flutter suppression. International Journal of Mechanical Sciences, 229, 107533 (2022)

    Article  Google Scholar 

  58. TIAN, W., ZHAO, T., GU, Y., and YANG, Z. Supersonic flutter control and optimization of metamaterial plate. Chinese Journal of Aeronautics, 34(11), 15–20 (2021)

    Article  Google Scholar 

  59. WARBURTON, G. B. The vibration of rectangular plates. Proceedings of the Institution of Mechanical Engineers, 168(1), 371–384 (1954)

    Article  MathSciNet  Google Scholar 

  60. SHENG, P., FANG, X., DAI, L., YU, D., and WEN, J. Synthetical vibration reduction of the nonlinear acoustic metamaterial honeycomb sandwich plate. Mechanical Systems and Signal Processing, 185, 109774 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Laboratory of Science and Technology on Integrated Logistics Support, College of Intelligence Science and Technology, National University of Defense Technology, Changsha, 410073, China

    Peng Sheng, Xin Fang, Dianlong Yu & Jihong Wen

Authors
  1. Peng Sheng
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. Xin Fang
    View author publications

    You can also search for this author inPubMed Google Scholar

  3. Dianlong Yu
    View author publications

    You can also search for this author inPubMed Google Scholar

  4. Jihong Wen
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to Xin Fang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 52241103, 52322505, and 11991032) and the Natural Science Foundation of Hunan Province of China (No. 2023JJ10055)

Rights and permissions

Open access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, P., Fang, X., Yu, D. et al. Nonlinear metamaterial enabled aeroelastic vibration reduction of a supersonic cantilever wing plate. Appl. Math. Mech.-Engl. Ed. 45, 1749–1772 (2024). https://doi.org/10.1007/s10483-024-3165-7

Download citation

  • Received: 13 April 2024

  • Revised: 03 July 2024

  • Published: 30 September 2024

  • Issue Date: October 2024

  • DOI: https://doi.org/10.1007/s10483-024-3165-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key words

  • nonlinear acoustic metamaterial (NAM)
  • hypersonic aeroelastic vibration
  • vibration reduction
  • fluid-structure interaction

Chinese Library Classification

  • O328

2010 Mathematics Subject Classification

  • 74H45
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature