Citation: | YANG Yiguang, WANG Juncheng, XIE Fengying, LIU Jie. Data and Methods in Computer-aided Diagnosis Systems of Skin Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(1): 168-176. DOI: 10.12290/xhyxzz.2022-0413 |
[1] |
田燕, 刘玮. 皮肤屏障[J]. 实用皮肤病学杂志, 2013, 6: 346-348. https://www.cnki.com.cn/Article/CJFDTOTAL-SYPF201306012.htm
|
[2] |
邹先彪. 皮肤影像学与人工智能[J]. 中国医学前沿杂志, 2019, 11: 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-YXQY201908001.htm
|
[3] |
田红, 肖桂芝, 田苗, 等. 黑色素瘤治疗药物的研究进展[J]. 现代药物与临床, 2015, 30: 890-896. https://www.cnki.com.cn/Article/CJFDTOTAL-GWZW201507030.htm
|
[4] |
Peng D, Sun J, Wang J, et al. Burden of Skin Disease-China, 1990—2019[J]. China CDC Wkly, 2021, 3: 472. DOI: 10.46234/ccdcw2021.123
|
[5] |
Schmid-Saugeon P, Guillod J, Thiran J. Towards a computer-aided diagnosis system for pigmented skin lesions[J]. Comput Med Imaging Graph, 2003, 27: 65-78. DOI: 10.1016/S0895-6111(02)00048-4
|
[6] |
Micali G, Lacarrubba F, Massimino D, et al. Dermatos-copy: alternative uses in daily clinical practice[J]. J Am Acad Dermatol, 2011, 64: 1135-1146. DOI: 10.1016/j.jaad.2010.03.010
|
[7] |
崔勇, 杨森, 张学军. 数码技术与皮肤病学[J]. 临床皮肤科杂志, 2008, 37: 61-62. https://www.cnki.com.cn/Article/CJFDTOTAL-LCPF200801042.htm
|
[8] |
谢凤英. 皮肤镜图像处理技术[M]. 北京: 电子工业出版社, 2015.
|
[9] |
刘洁, 邹先彪. 实用皮肤镜学[M]. 北京: 人民卫生出版社, 2021.
|
[10] |
Lallas A, Zalaudek I, Argenziano G, et al. Running head: Dermoscopy in general dermatology[J]. Dermatol Clin, 2013, 31: 679-694. DOI: 10.1016/j.det.2013.06.008
|
[11] |
涂鹏, 张群霞. 高频超声在皮肤疾病中的研究进展[J]. 临床超声医学杂志, 2013, 15: 3. https://www.cnki.com.cn/Article/CJFDTOTAL-LCCY201312019.htm
|
[12] |
Kak AC, Slaney M. Principles of computerized tomographic imaging[M]. Soc Ind Appl Math, 2001.
|
[13] |
肖佳, 郭爱元, 黄健, 等. 反射式共聚焦激光扫描显微镜在皮肤科的应用[J]. 中国麻风皮肤病杂志, 2016, 32: 567-569. https://www.cnki.com.cn/Article/CJFDTOTAL-MALA201609029.htm
|
[14] |
何黎. 皮肤影像技术概况、应用现状及前景[J]. 皮肤科学通报, 2016, 33: 29-37. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXW201601009.htm
|
[15] |
唐莎. 头面部皮肤癌放射治疗的护理[J]. 临床和实验医学杂志, 2008, 7: 1. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLC200806141.htm
|
[16] |
刘淋红, 李忻悦, 李灵. 1002例皮肤恶性肿瘤回顾性分析[J]. 四川医学, 2021, 42: 444-447. https://www.cnki.com.cn/Article/CJFDTOTAL-SCYX202105003.htm
|
[17] |
张翰林, 杨子涵, 王远卓, 等. 玫瑰痤疮共病的研究进展[J]. 基础医学与临床, 2021, 41: 1502-1506. https://www.cnki.com.cn/Article/CJFDTOTAL-JCYL202110018.htm
|
[18] |
中国医疗保健国际交流促进会皮肤科分会, 中国医疗保健国际交流促进会华夏皮肤影像人工智能协作组. 黑素细胞肿瘤皮肤镜特征及组织病理特征相关性专家共识(2020)[J]. 中华皮肤科杂志, 2020, 53: 859-868.
|
[19] |
Kothari S, Phan JH, Stokes TH, et al. Pathology imaging informatics for quantitative analysis of whole-slide images[J]. J Am Med Inform Assoc, 2013, 20: 1099-1108.
|
[20] |
周思淼. 基于深度学习的基底细胞癌病理图像识别方法研究[D]. 沈阳: 沈阳工业大学, 2021.
|
[21] |
Sankarapandian S, Kohn S, Spurrier V, et al. A pathology deep learning system capable of triage of melanoma specimens utilizing dermatopathologist consensus as ground truth[C]. IEEE International Conference Computer Vision (ICCV). 2021: 629-638.
|
[22] |
邹先彪. 皮肤镜在皮肤病诊断上的价值[C]. 2012全国中西医结合皮肤性病学术会议论文汇编. 2012: 38.
|
[23] |
谢凤英, 刘洁, 崔勇, 等. 皮肤镜图像计算机辅助诊断技术[J]. 中国医学文摘: 皮肤科学, 2016, 33: 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXW201601011.htm
|
[24] |
Emre Celebi M, Kingravi HA, Iyatomi H, et al. Border detection in dermoscopy images using statistical region merging[J]. Skin Res Technol, 2008, 14: 347-353.
|
[25] |
Xie F, Bovik AC. Automatic segmentation of dermoscopy images using self-generating neural networks seeded by genetic algorithm[J]. Pattern Recognit, 2013, 46: 1012-1019.
|
[26] |
Kasmi R, Mokrani K, Rader RK, et al. Biologically inspired skin lesion segmentation using a geodesic active contour technique[J]. Skin Res Technol, 2016, 22: 208-222.
|
[27] |
Fan H, Xie F, Li Y, et al. Automatic segmentation of dermoscopy images using saliency combined with Otsu threshold[J]. Comput Biol Med, 2017, 85: 75-85.
|
[28] |
Celebi ME, Kingravi HA, Uddin B, et al. A methodological approach to the classification of dermoscopy images[J]. Comput Med Imaging Graph, 2007, 31: 362-373.
|
[29] |
Capdehourat G, Corez A, Bazzano A, et al. Toward a combined tool to assist dermatologists in melanoma detection from dermoscopic images of pigmented skin lesions[J]. Pattern Recognit Lett, 2011, 32: 2187-2196.
|
[30] |
Ferris LK, Harkes JA, Gilbert B, et al. Computer-aided classification of melanocytic lesions using dermoscopic images[J]. J Am Acad Dermatol, 2015, 73: 769-776.
|
[31] |
Xie F, Fan H, Li Y, et al. Melanoma Classification on Dermoscopy Images Using a Neural Network Ensemble Model[J]. IEEE Trans Med Imaging, 2017, 36: 849-858.
|
[32] |
周航宁, 谢凤英, 姜志国, 等. 基于深度学习的皮肤影像分类[J]. 协和医学杂志, 2018, 9: 15-18. DOI: 10.3969/j.issn.1674-9081.2018.01.004
|
[33] |
Nasr-Esfahani E, Samavi S, Karimi N, et al. Melanoma detection by analysis of clinical images using convolutional neural network[C]. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2016: 1373-1376.
|
[34] |
Yu L, Chen H, Dou Q, et al. Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks[J]. IEEE Trans Med Imaging, 2017, 36: 994-1004.
|
[35] |
Adegun AA, Viriri S. Deep learning-based system for automatic melanoma detection[J]. IEEE Access, 2019, 8: 7160-7172.
|
[36] |
Jojoa Acosta MF, Caballero Tovar LY, Garcia-Zapirain MB, et al. Melanoma diagnosis using deep learning techniques on dermatoscopic images[J]. BMC Med Imaging, 2021, 21: 1-11.
|
[37] |
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542: 115-118.
|
[38] |
Gessert N, Sentker T, Madesta F, et al. Skin lesion classification using cnns with patch-based attention and diagnosis-guided loss weighting[J]. IEEE Trans Biomed Eng, 2019, 67: 495-503.
|
[39] |
Yang Y, Wang J, Xie F, et al. A Convolutional Neural Network Trained with Dermoscopic Images of Psoriasis Performed on par with 230 Dermatologists[J]. Comput Biol Med, 2021: 104924.
|
[40] |
Wang G, Li W, Ourselin S, et al. Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks[C]. International MICCAI brainlesion workshop, 2017: 178-190.
|
[41] |
Zhou C, Ding C, Lu Z, et al. One-pass multi-task convolutional neural networks for efficient brain tumor segmentation[C]. International Conference on Medical Image Computing and Computer-Assisted Intervention, 2018: 637-645.
|
[42] |
Dolz J, Gopinath K, Yuan J, et al. HyperDense-Net: a hyper-densely connected CNN for multi-modal image segmentation[J]. IEEE Trans Med Imaging, 2018, 38: 1116-1126.
|
[43] |
Iandola F, Moskewicz M, Karayev S, et al. DenseNet: Implementing efficient convnet descriptor pyramids[J]. Eprint Arxiv, 2014.
|
[44] |
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]. International Conference on Medical image computing and computer-assisted intervention, 2015: 234-241.
|
[45] |
Dolz J, Desrosiers C, Ben Ayed I. IVD-Net: Intervertebral disc localization and segmentation in MRI with a multi-modal UNet[C]. International workshop and challenge on computational methods and clinical applications for spine imaging, 2018: 130-143.
|
[46] |
Kamnitsas K, Bai W, Ferrante E, et al. Ensembles of multiple models and architectures for robust brain tumour segmentation[C]. International MICCAI brainlesion workshop, 2017: 450-462.
|
[47] |
Yap J, Yolland W, Tschandl P. Multimodal skin lesion classification using deep learning[J]. Exp Dermatol, 2018, 27: 1261-1267.
|
[48] |
Bi L, Feng DD, Fulham M, et al. Multi-label classifica-tion of multi-modality skin lesion via hyper-connected convolutional neural network[J]. Pattern Recognit, 2020, 107: 107502.
|
[49] |
Kawahara J, Daneshvar S, Argenziano G, et al. Seven-point checklist and skin lesion classification using multitask multimodal neural nets[J]. IEEE J Biomed Health Inform, 2018, 23: 538-546.
|
[50] |
Tang P, Yan X, Nan Y, et al. FusionM4Net: A multi-stage multi-modal learning algorithm for multi-label skin lesion classification[J]. Med Image Anal, 2022, 76: 102307.
|
[51] |
王诗琪, 刘洁, 朱晨雨, 等. 皮肤科医师与深度卷积神经网络诊断色素痣和脂溢性角化病皮肤镜图像比较[J]. 中华皮肤科杂志, 2018, 51: 486-489.
|
[52] |
Zhu CY, Wang YK, Chen HP, et al. A deep learning based framework for diagnosing multiple skin diseases in a clinical environment[J]. Front Med, 2021, 8: 626369.
|
[53] |
刘兆睿, 张漪澜, 谢凤英, 等. 基于皮肤镜图像智能分析的早期蕈样肉芽肿诊断模型构建[J]. 协和医学杂志, 2021, 12: 689-697. DOI: 10.12290/xhyxzz.2021-0496
|
[54] |
Zhang Y, Tino P, Leonardis A, et al. A survey on neural network interpretability[J]. IEEE Trans Emerg Top Comput Intell, 2021, PP: 1-17.
|