Skip to main content

Advertisement

Log in

The Effect of Retailer’ Social Responsibility and Government Subsidy on the Performance of Low-Carbon Supply Chain

  • Published:
Journal of the Operations Research Society of China Aims and scope Submit manuscript

Abstract

Based on the cap-and-trade regulation, the effect of retailer’s social responsibility and subsidy are analyzed in a two-level low-carbon supply chain. The government subsidizes manufacturer to encourage low-carbon technological innovation. It is gotten that both retailer’s social responsibility and subsidy can improve the profit of manufacturer and reduce the carbon emission level. Although more subsidies to manufacturer indeed may decrease the profit of retailer, it is good measure to promote the centralized decision-making between the retailer and manufacturer. A certain retailer’s social responsibilities are good for the carbon emission reduction, but it also brings about the decline of profit in the supply chain. The centralized decision-making is always the best choice strategy for the carbon emission reduction, while in the decentralized decision-making situation, the retailer has more possibilities to care about social responsibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Notes

  1. www.walmartsustainabilityhub.com Published online: 2X February 2023.

  2. http: //www.wal-martchina.com

References

  1. Linton, J.D., Klassen, R., Jayaraman, V.: Sustainable supply chains: an introduction. J. Oper. Manag. 25(6), 1075–1082 (2007)

    MATH  Google Scholar 

  2. Amaeshi, K., Osuji, O.K., Nnodim, P.: Corporate social responsibility in supply chains of global brands: A boundaryless responsibility? Clarifications, exceptions and implications. J. Bus. Ethics 81(1), 223–234 (2008)

    Google Scholar 

  3. Xu, X., He, P., Xu, H., Zhang, Q.: Supply chain coordination with green technology under cap-and-trade regulation. Int. J. Prod. Econ. 183, 433–442 (2017)

    MATH  Google Scholar 

  4. Zhang, Y., Guo, C., Wang, L.: Supply chain strategy analysis of low carbon subsidy policies based on carbon trading. Sustainability 2(9), 3532 (2020)

    MATH  Google Scholar 

  5. Dong, C., Shen, B., Chow, P.S., Yang, L., Ng, C.T.: Sustainability investment under cap-and-trade regulation. Ann. Oper. Res. 240(2), 509–531 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Xie, X.P., Zhao, D.Z.: Research on cooperation strategy of enterprises’ carbon emission reduction in low carbon supply chain. J. Manag. Sci. 26(3), 108–119 (2013)

    MATH  Google Scholar 

  7. Brauneis, A., Mestel, R., Palan, S.: Inducing low-carbon investment in the electric power industry through a price floor for emissions trading. Energy Policy 53, 190–204 (2013)

    MATH  Google Scholar 

  8. Shoaeinaeini, M., Govindan, K., Rahmani, D.: Pricing policy in green supply chain design: the impact of consumer environmental awareness and green subsidies. Oper. Res. Int. J. 2021, 1–40 (2021)

    Google Scholar 

  9. Li, Z., Pan, Y., Yang, W., et al.: Effects of government subsidies on green technology investment and green marketing coordination of supply chain under the cap-and-trade mechanism. Energy Econ. 101, 105426 (2021)

    Google Scholar 

  10. Li, Y., Zhao, D.: Research on R&D cost allocation comparison for low-carbon supply chain based on government’s subsidies. Soft Comput. 28, 21–26+31 (2014)

    MATH  Google Scholar 

  11. Xie, X.M., Zhu, Q.W., Wang, R.Y.: Turning green subsidies into sustainability: how green process innovation improves firms’ green image. Bus. Strateg. Environ. 28, 1416–1433 (2019)

    MATH  Google Scholar 

  12. Chen, W.T., Hu, Z.H.: Using evolutionary game theory to study governments and manufacturers’ behavioral strategies under various carbon taxes and subsidies. J. Clean. Prod. 201, 123–141 (2018)

    MATH  Google Scholar 

  13. Cao, K.Y., Xu, X., Wu, Q., Zhang, Q.: Optimal production and carbon emission reduction level under cap-and-trade and low carbon subsidy policies. J. Clean. Prod. 167, 505–513 (2017)

    MATH  Google Scholar 

  14. Hou, Q., Sun, J.Y.: Investment strategy analysis of emission-reduction technology under cost subsidy policy in the carbon trading market. Kybernetes 49, 252–284 (2019)

    MATH  Google Scholar 

  15. Hussain, J., Pan, Y., Ali, G., Yue, X.: Pricing behavior of monopoly market with the implementation of green technology decision under emission reduction subsidy policy. Sci. Total Environ. 709, 136110 (2020)

    Google Scholar 

  16. Hutchinson, E., Kennedy, P.W., Martinez, C.: Subsidies for the production of cleaner energy: when do they cause emissions to rise? J. Econ. Anal. Policy 10(1), 1–9 (2010)

    Google Scholar 

  17. Chen, J.Y., Dimitrov, S., Pun, H.: The impact of government subsidy on supply Chains’ sustainability innovation. Omega Int. J. Manag. Sci. 86, 42–58 (2019)

    MATH  Google Scholar 

  18. Choi, T.M., Cai, Y.J., Shen, B.: Sustainable fashion supply chain management: a system of systems analysis. IEEE Trans. Eng. Manage. 66(4), 730–745 (2019)

    MATH  Google Scholar 

  19. Shen, B., Zhu, C., Li, Q., Wang, X.: Green technology adoption in textiles and apparel supply chains with environmental taxes. Int. J. Prod. Res. 59(14), 4157–4174 (2020)

    MATH  Google Scholar 

  20. Cao, Y., Shen, B.: Adopting Blockchain Technology to Block Less Sustainable Products’ Entry in Global Trade. Transp. Res. Part E Logist. Transp. Rev. 161, 102695 (2022)

    MATH  Google Scholar 

  21. Ebrahimi, S., Hosseini-Motlagh, S.M., Nematollahi, M., Cárdenas-Barrón, L.E.: Coordinating double-level sustainability effort in a sustainable supply chain under cap-and-trade regulation. Expert Syst. Appl. 207, 117872 (2022)

    MATH  Google Scholar 

  22. Ni, D., Li, K.W., Tang, X.: Social responsibility allocation in two-echelon supply chains: insights from wholesale price contracts. Eur. J. Oper. Res. 207(3), 1269–1279 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Nematollahi, M., Hosseini-Motlagh, S.M., Heydari, J.: Coordination of social responsibility and order quantity in a two-echelon supply chain: a collaborative decision-making perspective. Int. J. Prod. Econ. 184, 107–121 (2017)

    MATH  Google Scholar 

  24. Ni, D., Li, K.W.: A game-theoretic analysis of social responsibility conduct in two-echelon supply chains. Int. J. Prod. Econ. 138(2), 303–313 (2012)

    MATH  Google Scholar 

  25. Goering, G.E.: Corporate social responsibility and marketing channel coordination. Res. Econ. 66(2), 142–148 (2012)

    MATH  Google Scholar 

  26. Panda, S.: Coordination of a socially responsible supply chain using revenue sharing contract. Transp. Res. Part E Logist. Transp. Rev. 67, 92–104 (2014)

    MATH  Google Scholar 

  27. Hsueh, C.F.: Improving corporate social responsibility in a supply chain through anew revenue sharing contract. Int. J. Prod. Econ. 151, 214–222 (2014)

    MATH  Google Scholar 

  28. Panda, S., Modak, N., Basu, M., Goyal, S.: Channel coordination and profit distribution in a social responsible three-layer supply chain. Int. J. Prod. Econ. 168, 224–233 (2015)

    MATH  Google Scholar 

  29. Zhou, Y., Hu, F., Zhou, Z.: Pricing decisions and social welfare in a supply chain with multiple competing retailers and carbon tax policy. J. Clean. Prod. 190, 752–777 (2018)

    MATH  Google Scholar 

  30. Shen, B., Gao, Y., Xu, X., Wang, X.: Product line design and quality differentiation for green and non-green products in a supply chain. Int. J. Prod. Res. 58(1), 148–164 (2019)

    MATH  Google Scholar 

  31. Shen, B., Liu, S., Zhang, T., Choi, T.M.: Optimal advertising and pricing for new green products in the circular economy. J. Clean. Prod. 233, 314–327 (2019)

    MATH  Google Scholar 

  32. Shen, B., Choi, T.M., Chan, H.L.: Selling green first or not? A Bayesian analysis with service levels and environmental impact considerations in the big data era. Technol. Forecast. Soc. Chang. 144, 412–420 (2019)

    MATH  Google Scholar 

  33. Qb, A., Mc, B., Yn, C., et al.: Improving sustainability and social responsibility of a two-tier supply chain investing in emission reduction technology. Appl. Math. Model. 95, 688–714 (2021)

    MathSciNet  MATH  Google Scholar 

  34. Geffen, C.A., Rothenberg, S.: Suppliers and environmental innovation the automotive paint process. Int. J. Oper. Prod. Manag. 20(2), 166–186 (2000)

    MATH  Google Scholar 

  35. Klassen, R.D., Vachon, S.: Collaboration and evaluation in the supply chain: the impact on plant-level environmental investment. Prod. Oper. Manag. 12(3), 336–352 (2003)

    MATH  Google Scholar 

  36. Vachon, S., Klassen, R.D.: Environmental management and manufacturing performance: the role of collaboration in the supply chain. Int. J. Prod. Econ. 111(2), 299–315 (2008)

    MATH  Google Scholar 

  37. Zhu, Q., Geng, Y., Lai, K.H.: Circular economy practices among Chinese manufacturers varying in environmental-oriented supply chain cooperation and the performance implications. J. Environ. Manage. 91(6), 1324–1331 (2010)

    MATH  Google Scholar 

  38. Luo, Z., Chen, X., Wang, X.: The role of co-opetition in low carbon manufacturing. Eur. J. Oper. Res. 253(2), 392–403 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Shen, B., Ding, X., Chen, L., Chan, H.L.: Low carbon supply chain with energy consumption constraints: case studies from china’s textile industry and simple analytical model. Supply Chain Manag. Int. J. 22(3), 258–269 (2017)

    Google Scholar 

  40. Meng, W.: Comparation of subsidy and cooperation policy based on emission reduction R&D. Syst. Eng. 28, 123–126 (2010)

    MATH  Google Scholar 

  41. Song, Y., Zhao, D.Z.: The product portfolio optimization of manufacturers based on low-carbon economy. Syst. Eng. 30, 75–81 (2012)

    MATH  Google Scholar 

  42. Mondal, C., Giri, B.C., Biswas, S.: Integrating corporate social responsibility in a closed-loop supply chain under government subsidy and used products collection strategies. Flex. Serv. Manuf. J. 8, 1–36 (2021)

    MATH  Google Scholar 

  43. Sinayi, M., Rasti-Barzoki, M.: A game theoretic approach for pricing, greening, and social welfare policies in a supply chain with government intervention. J. Clean. Prod. 196, 1443–1458 (2018)

    MATH  Google Scholar 

  44. Wen, X., Sun, X., Sun, Y., Yue, X.: Airline crew scheduling: models and algorithms. Transp. Res. Part E Logist. Transp. Review 149, 102304 (2021)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the editor and the reviewers for their help comments and suggestions, which have improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Contributions

This article has been composed by P. Wang, X.-H. Y, and Q. Zhang. All three authors have read and agreed to the published this version of the manuscript.

Corresponding author

Correspondence to Xiao-Hui Yu.

Ethics declarations

Conflict of interest

P. Wang, X.-H. Yu, and Q. Zhang declare no conflict of interest.

Additional information

This research was funded by the National Natural Science Foundation of China (Nos. 72171024 and 71801016), in part by 2022 annual project of the Beijing Municipal Education Commission’s support plan for the construction of the faculty of Beijing municipal universities (No. BPHR202203154), the Beijing Municipal Commissions and Offices Foundation of China (No. 2019Z005-001-KWY), and E-commerce Teaching Innovation Team (No. CJGX2022-026–002).

Appendices

Appendix A

Proof of Theorem 1.

At the second stage, the retailer sets the retrial price to maximize its profit function, then

$$\mathop {{\text{max}}}\limits_{p} \;\pi_{{\text{R}}} {(}p;e,w{)} = \left( {p - w} \right)\left( {a - \beta p - \gamma \left( {e_{0} - e} \right)} \right).$$
(A1)

By Eq. (A1), \(\frac{{\partial \pi_{{\text{R}}} }}{\partial p} = a - \gamma \left( {e_{0} - e} \right) + \beta w - 2\beta p\), let it equal zero, the solution is \(p^{ * } = {a \mathord{\left/ {\vphantom {a {2\beta }}} \right. \kern-0pt} {2\beta }} + {w \mathord{\left/ {\vphantom {w 2}} \right. \kern-0pt} 2} - {{\gamma \left( {e_{0} - e} \right)} \mathord{\left/ {\vphantom {{\gamma \left( {e_{0} - e} \right)} {2\beta }}} \right. \kern-0pt} {2\beta }}\), while \(\frac{{\partial^{2} \pi_{{\text{R}}} }}{{\partial p^{2} }} = - 2\beta < 0\). At the second stage, the manufacturer sets carbon emission and the wholesale price for their products to maximize its utility function, then

$$\mathop {\max }\limits_{e,w} \;\pi_{{\text{M}}} {(}e{,}w{)} = \left( {w - \left( {e_{0} - e} \right)p_{e} } \right)\left( {a - \beta p - \gamma \left( {e_{0} - e} \right)} \right) - {{\lambda e^{2} } \mathord{\left/ {\vphantom {{\lambda e^{2} } 2}} \right. \kern-0pt} 2} + Kp_{e} .$$

Pugging \(p^{ * }\) into manufacturer’s profit function \(\pi_{{\text{M}}}\), we get that

$$\mathop {{\text{max}}}\limits_{e,w} \;\pi_{{\text{M}}} {(}e{,}w{)} = {{\left( {w - \left( {e_{0} - e} \right)p_{e} } \right)\left( {a - \beta w - \gamma \left( {e_{0} - e} \right)} \right)} \mathord{\left/ {\vphantom {{\left( {w - \left( {e_{0} - e} \right)p_{e} } \right)\left( {a - \beta w - \gamma \left( {e_{0} - e} \right)} \right)} 2}} \right. \kern-0pt} 2} - {{\lambda e^{2} } \mathord{\left/ {\vphantom {{\lambda e^{2} } 2}} \right. \kern-0pt} 2} + Kp_{e} .$$
(A2)

Let the Hessian matrix of profit function be denoted by \(H_{{\pi_{{\text{M}}} }}\). Primary sub formula of first order sequence \({\text{Det}}(H_{{\pi_{{\text{M}}} ,1}} ) = - \lambda { + }\gamma p_{e}\), and the primary sub formula of second order sequence \({\text{Det}}(H_{{\pi_{{\text{M}}} ,2}} ) = \beta \left( {\lambda - \gamma p_{e} } \right) - {{\left( {\gamma - p_{e} \beta } \right)^{2} } \mathord{\left/ {\vphantom {{\left( {\gamma - p_{e} \beta } \right)^{2} } 4}} \right. \kern-0pt} 4}\). When \({{\lambda \geqslant \left( {\gamma - p_{e} \beta } \right)^{2} } \mathord{\left/ {\vphantom {{\lambda \geqslant \left( {\gamma - p_{e} \beta } \right)^{2} } {4\beta }}} \right. \kern-0pt} {4\beta }}{ + }\gamma p_{e} = {{\left( {\gamma { + }p_{e} \beta } \right)^{2} } \mathord{\left/ {\vphantom {{\left( {\gamma { + }p_{e} \beta } \right)^{2} } {4\beta }}} \right. \kern-0pt} {4\beta }}\), \({\text{Det}}(H_{{\pi_{{\text{M}}} ,2}} ) \geqslant 0\) and \({\text{Det}}(H_{{\pi_{{\text{M}}} ,1}} ) = - \lambda { + }\gamma p_{e} \leqslant 0\). Therefore, \(H_{{\pi_{{\text{M}}} }}\) is negative definite. The first-order conditions are

$$\left\{ \begin{gathered} \frac{{\partial \pi_{{\text{M}}} }}{\partial w} = \frac{{a - w\beta - \gamma \left( {e_{0} - e} \right)}}{2} - \frac{{\left( {w - \left( {e_{0} - e} \right)p_{e} } \right)\beta }}{2} = 0, \hfill \\ \frac{{\partial \pi_{{\text{M}}} }}{\partial e} = \frac{{p_{e} \left( {a - w\beta - \gamma \left( {e_{0} - e} \right)} \right)}}{2} + \frac{{\gamma \left( {w - \left( {e_{0} - e} \right)p_{e} } \right)}}{2} - \lambda e = 0. \hfill \\ \end{gathered} \right.$$

So

$$\begin{aligned} e^{ * } & = \frac{{\left( {\gamma + p_{e} \beta } \right)\left( {a - \left( {\gamma + p_{e} \beta } \right)e_{0} } \right)}}{{4\lambda \beta - \left( {\gamma { + }p_{e} \beta } \right)^{2} }} = \frac{{\eta_{1} \left( {a - \eta_{1} e_{0} } \right)}}{\Delta }, \\ w^{ * } & = \frac{{\left( {2\lambda - p_{e} (\gamma + p_{e} \beta )} \right)a - 2\lambda (\gamma - p_{e} \beta )e_{0} }}{{4\lambda \beta - \left( {\gamma { + }p_{e} \beta } \right)^{2} }} = \frac{{\left( {2\lambda - p_{e} \eta_{1} } \right)a - 2\lambda \eta_{2} e_{0} }}{\Delta }, \\ p^{ * } & = \frac{a}{2\beta } + \frac{w}{2} - \frac{{\gamma \left( {e_{0} - e} \right)}}{2\beta } = \frac{{\left( {3\lambda - p_{e} \left( {p_{e} \beta { + }\gamma } \right)} \right)a{ + }\lambda \left( {p_{e} \beta - 3\gamma } \right)e_{0} }}{{4\beta \lambda - \left( {\gamma + p_{e} \beta } \right)^{2} }} \\ & = \frac{{\left( {3\lambda - p_{e} \eta_{1} } \right)a - \lambda \left( {2\eta_{1} { + }\eta_{2} } \right)e_{0} }}{\Delta }, \\ \end{aligned}$$

where \(\Delta { = 4}\lambda \beta - \left( {\gamma { + }p_{e} \beta } \right)^{2}\), \(\eta_{1} = \gamma { + }p_{e} \beta\) and \(\eta_{2} = \gamma - p_{e} \beta\).

Proof of Proposition 1

By Eq. (3), there are

$$\frac{{\partial e^{ * } }}{\partial \lambda } = - \frac{{4\eta_{1} \beta \left( {a - \eta_{1} e_{0} } \right)}}{{\Delta^{2} }} \leqslant 0.$$

By Eq. (5), it is gotten that

$$\frac{{\partial p^{ * } }}{\partial \lambda } = \frac{{e_{{0}} \eta_{{1}}^{2} { + }a\eta_{{1}} \left( {3\beta p_{e} - \gamma } \right)}}{{{\Delta }^{2} }},$$

so \(p_{e} \geqslant\)\({\gamma \mathord{\left/ {\vphantom {\gamma {3\beta }}} \right. \kern-0pt} {3\beta }}\), \(\frac{{\partial p^{ * } }}{\partial \lambda } \geqslant\) 0.

Proof of Proposition 2

Without subsidy and customer surplus, the demand is

$$\begin{aligned} D^{*} & = a - \beta p^{*} - \gamma \left( {e_{0} - e^{*} } \right) = a - \beta \left( {\frac{a}{2\beta } + \frac{{w^{*} }}{2} - \frac{{\gamma \left( {e_{0} - e^{*} } \right)}}{2\beta }} \right) - \gamma \left( {e_{0} - e^{*} } \right) \\ & = \frac{{\left( {a - \beta w^{*} - \gamma \left( {e_{0} - e^{*} } \right)} \right)}}{2} = \frac{{\beta \lambda \left( {a - \eta_{1} e_{0} } \right)}}{\Delta }. \\ \end{aligned}$$
(A3)

Also, the profits of retailer and manufacturer are

$$\pi_{{\text{R}}}^{*} = \left( {p^{*} - w^{*} } \right)D^{*} = \left( {p^{*} - w^{*} } \right)\frac{{\beta \lambda \left( {a - \eta_{1} e_{0} } \right)}}{\Delta } = \frac{{\beta \lambda^{2} \left( {a - \eta_{1} e_{0} } \right)^{2} }}{{\Delta^{2} }},$$
(A4)
$$\begin{aligned} \pi_{{\text{M}}}^{*} & = \left( {w^{*} - \left( {e_{0} - e^{*} } \right)p_{e} } \right)D^{*} - \frac{{\lambda e^{*2} }}{2} + Kp_{e} \\ & = \frac{{2\lambda^{2} \beta \left( {a - \left( {\gamma + p_{e} \beta } \right)e_{0} } \right)\left( {a - \left( {\gamma + p_{e} \beta } \right)e_{0} } \right)}}{{\Delta^{2} }} \\ &\quad - \frac{{\lambda \left( {\gamma + p_{e} \beta } \right)^{2} \left( {a - \left( {\gamma + p_{e} \beta } \right)e_{0} } \right)^{2} }}{{2\Delta^{2} }} + Kp_{e} \\ & = \frac{{\lambda \left( {a - \eta_{1} e_{0} } \right)^{2} }}{2\Delta } + Kp_{e} . \\ \end{aligned}$$
(A5)

Furthermore, the whole profit of SC is

$$\begin{aligned} \pi_{{\text{S}}}^{*} & = \pi_{{\text{M}}}^{*} + \pi_{{\text{R}}}^{*} = \frac{{\beta \lambda^{2} \left( {a - \eta_{1} e_{0} } \right)^{2} }}{{\Delta^{2} }}{ + }\frac{{\lambda \left( {a - \eta_{1} e_{0} } \right)^{2} }}{2\Delta } + Kp_{e} \\ & = \frac{{\lambda \left( {2\beta \lambda { + }\Delta } \right)\left( {a - e_{0} \eta_{1} } \right)^{2} }}{{2\Delta^{2} }} + Kp_{e} . \\ \end{aligned}$$
(A6)

By Eqs. (A3), (A4), (A5) and (A6), we have that

$$\begin{aligned} \frac{{\partial D^{ * } }}{\partial \lambda } & = - \frac{{4\beta^{2} \left( {a - \eta_{1} e_{0} } \right)}}{{\Delta^{2} }} - \frac{{\left( {a - \eta_{1} e_{0} } \right)}}{\Delta } \leqslant 0, \\ \frac{{\partial \pi_{{\text{R}}}^{*} }}{\partial \lambda } & = - \frac{{8\beta^{2} \lambda^{2} \left( {a - \eta_{1} e_{0} } \right)^{2} }}{{\Delta^{3} }} - \frac{{2\beta \lambda \left( {a - \eta_{1} e_{0} } \right)^{2} }}{{\Delta^{2} }} \leqslant 0, \\ \frac{{\partial \pi_{{\text{M}}}^{*} }}{\partial \lambda } & = - \frac{{4\lambda \beta \left( {a - \eta_{1} e_{0} } \right)^{2} }}{{2\Delta^{2} }} - \frac{{\left( {a - \eta_{1} e_{0} } \right)^{2} }}{2\Delta } \leqslant 0. \\ \end{aligned}$$

Furthermore, as \(\pi_{{\text{S}}}^{*} = \pi_{{\text{M}}}^{*} + \pi_{{\text{R}}}^{*}\), we get that

$$\frac{{\partial \pi_{{\text{S}}}^{*} }}{\partial \lambda } \leqslant 0.$$

Proof of Theorem 2

When the cooperation is structured in the SC, the retailer and manufacturer set the carbon emission and price together to maximize the profit of SC, so

$$\mathop {{\text{max}}}\limits_{e,p} \;\pi_{{\text{s}}} = {{\left( {p - \left( {e_{0} - e} \right)p_{e} } \right)\left( {a - \beta p - \gamma \left( {e_{0} - e} \right)} \right)} \mathord{\left/ {\vphantom {{\left( {p - \left( {e_{0} - e} \right)p_{e} } \right)\left( {a - \beta p - \gamma \left( {e_{0} - e} \right)} \right)} 2}} \right. \kern-0pt} 2} - {{\lambda e^{2} } \mathord{\left/ {\vphantom {{\lambda e^{2} } 2}} \right. \kern-0pt} 2} + Kp_{e}$$
(A7)

Let the Hessian matrix of profit function be denoted by \(H_{{\pi_{{\text{s}}} }}\). Primary sub formula of first order sequence \({\text{Det}}(H_{{\pi_{{\text{S}}} ,1}} ) = - \lambda { + 2}\gamma p_{e}\), and the primary sub formula of second order sequence \({\text{Det}}(H_{{\pi_{{\text{S}}} ,2}} ) = 2\beta \lambda - \left( {\gamma + p_{e} \beta } \right)^{2}\). When \({{\lambda \geqslant \left( {\gamma { + }p_{e} \beta } \right)^{2} } \mathord{\left/ {\vphantom {{\lambda \geqslant \left( {\gamma { + }p_{e} \beta } \right)^{2} } {2\beta }}} \right. \kern-0pt} {2\beta }}\), \({\text{Det}}(H_{{\pi_{{\text{S}}} ,2}} ) \geqslant 0\) and \({\text{Det}}(H_{{\pi_{{\text{S}}} ,1}} ) = - \lambda { + 2}\gamma p_{e} \leqslant 0\). Therefore, \(H_{{\pi_{{\text{S}}} }}\) is negative definite. The first-order conditions are

$$\left\{ \begin{gathered} \frac{{\partial \pi_{{\text{S}}} }}{\partial p} = a - 2\beta p - (\gamma - \beta p_{e} )\left( {e_{0} - e} \right) = 0, \hfill \\ \frac{{\partial \pi_{{\text{S}}} }}{\partial e} = p_{e} a + (\gamma - \beta p_{e} )p - 2\gamma p_{e} \left( {e_{0} - e} \right) - \lambda e = 0. \hfill \\ \end{gathered} \right.$$

So

$$\begin{aligned} e^{{**}} & = \frac{{\left( {\gamma + p_{e} \beta } \right)\left( {a - \left( {\gamma + p_{e} \beta } \right)e_{0} } \right)}}{{2\lambda \beta - \left( {\gamma { + }p_{e} \beta } \right)^{2} }} = \frac{{\eta_{1} \left( {a - \eta_{1} e_{0} } \right)}}{\Delta - 2\lambda \beta }, \\ p^{{**}} & = \frac{a}{2\beta } - \frac{{\left( {\gamma - p_{e} \beta } \right)\left( {e_{0} - e} \right)}}{2\beta } = \frac{a}{2\beta } - \frac{{\left( {\gamma - p_{e} \beta } \right)\left( { - \eta_{1} a + 2\lambda \beta e_{0} } \right)}}{{2\beta \left( {\Delta - 2\beta \lambda } \right)}} \\ &= \frac{{\left( {\lambda \beta - p_{e} \beta \eta_{1} } \right)a - \lambda \eta_{2} e_{0} }}{{\beta \left( {\Delta - 2\beta \lambda } \right)}}, \\ \end{aligned}$$

where \(\Delta { = 4}\lambda \beta - \left( {\gamma { + }p_{e} \beta } \right)^{2}\), \(\eta_{1} = \gamma { + }p_{e} \beta\) and \(\eta_{2} = \gamma - p_{e} \beta\).

Proof of Proposition 3

Comparing Theorem 1 and 2, we get \(e^{{**}} \geqslant\)\(e^{*}\) directly. Moreover, under the condition of centralized decision-making, the market demand is

$$D^{{**}} = a - \beta p^{{**}} - \gamma \left( {e_{0} - e^{{**}} } \right) = \frac{{\left( {a - \eta_{1} \left( {e_{0} - e^{*} } \right)} \right)}}{2} = \frac{{\beta \lambda \left( {a - \eta_{1} e_{0} } \right)}}{\Delta - 2\beta \lambda }.$$

Then we have that \(D^{{**}} \geqslant D^{*}\). Furthermore, it is seen that

$$\begin{aligned} \pi_{{\text{S}}}^{{**}} &= \left( {p - \left( {e_{0} - e} \right)p_{e} } \right)D^{{**}} - \frac{{\lambda e^{**2} }}{2} + Kp_{e} = \frac{{\left( {a - \eta_{1} \left( {e_{0} - e^{**} } \right)} \right)}}{\beta }D^{{**}} - \frac{{\lambda e^{**2} }}{2} + Kp_{e} \quad \hfill \\ \quad \; &= \frac{{D^{{**2}} }}{\beta } - \frac{{\lambda e^{**2} }}{2} + Kp_{e} = \frac{{\beta \lambda^{2} \left( {a - \eta_{1} e_{0} } \right)^{2} }}{{\left( {\Delta - 2\beta \lambda } \right)^{2} }} - \frac{{\lambda \eta_{1}^{2} \left( {a - \eta_{1} e_{0} } \right)^{2} }}{{2\left( {\Delta - 2\beta \lambda } \right)^{2} }} + Kp_{e} \hfill \\ \quad \; &= \frac{{\lambda \left( {a - \eta_{1} e_{0} } \right)^{2} }}{{2\left( {\Delta - 2\beta \lambda } \right)}} + Kp_{e} . \hfill \\ \end{aligned}$$

So by Eq. (A6), we have that

$$\pi_{{\text{S}}}^{**} - \pi_{{\text{S}}}^{*} = \frac{{\lambda \left( {a - e_{0} \eta_{1} } \right)^{2} }}{2}\left( {\frac{1}{\Delta - 2\beta \lambda } - \frac{{4\beta \lambda { + }\Delta }}{{\Delta^{2} }}} \right) = \frac{{\beta \lambda^{2} \eta_{1}^{2} \left( {a - e_{0} \eta_{1} } \right)^{2} }}{{\left( {\Delta - 2\beta \lambda } \right)\Delta^{2} }} \geqslant 0.$$

Therefore, we obtain that \(\pi_{{\text{S}}}^{**} \geqslant \pi_{{\text{S}}}^{*}\).

Appendix B

Proof of Theorem 3

At the second stage, the retailer sets the retrial price to maximize its utility function, then

$$\mathop {{\text{max}}}\limits_{p} \;v_{{\text{R}}} = \left( {p - w} \right)\left( {a - \beta p - \gamma \left( {e_{0} - e} \right)} \right) + u\left( {a - \beta p - \gamma \left( {e_{0} - e} \right)} \right)^{2} /2.$$
(B1)

By Eq. (B1), \(\frac{{\partial v_{{\text{R}}} }}{\partial p} = \left( {1 - \beta u} \right)a - \left( {1 - \beta u} \right)\gamma \left( {e_{0} - e} \right) + \beta w - \beta \left( {2 - \beta u} \right)p\), let it be equal zero, the solution is

$$p^{c * } = \frac{1 - \beta u}{{\beta \left( {2 - \beta u} \right)}}a + \frac{w}{2 - \beta u} - \frac{{\left( {1 - \beta u} \right)\gamma \left( {e_{0} - e} \right)}}{{\beta \left( {2 - \beta u} \right)}},$$

while \(\frac{{\partial^{2} v_{{\text{R}}} }}{{\partial p^{2} }} = - 2\beta { + }u\beta < 0\). At the first stage, the manufacturer sets the carbon emission reduction level and the wholesale price to maximize its utility function, then

$$\mathop {{\text{max}}}\limits_{e,w} \;\pi_{{\text{M}}} = \left( {w - \left( {e_{0} - e} \right)p_{e} } \right)\left( {a - \beta p - \gamma \left( {e_{0} - e} \right)} \right) - {{\lambda e^{2} } \mathord{\left/ {\vphantom {{\lambda e^{2} } 2}} \right. \kern-0pt} 2} + Kp_{e} .$$

Pugging \(p^{c * }\) into manufacturer’s profit function \(\pi_{M}\):

$$\;\pi_{{\text{M}}} = {{\left( {w - \left( {e_{0} - e} \right)p_{e} } \right)\left( {a - w\beta - \gamma \left( {e_{0} - e} \right)} \right)} \mathord{\left/ {\vphantom {{\left( {w - \left( {e_{0} - e} \right)p_{e} } \right)\left( {a - w\beta - \gamma \left( {e_{0} - e} \right)} \right)} {\left( {2 - \beta u} \right)}}} \right. \kern-0pt} {\left( {2 - \beta u} \right)}} - {{\lambda e^{2} } \mathord{\left/ {\vphantom {{\lambda e^{2} } 2}} \right. \kern-0pt} 2} + Kp_{e} .$$
(B2)

Let the Hessian matrix of profit function be denoted by \(H_{{\pi_{{\text{M}}} }}\). Primary sub formula of first order sequence \({\text{Det}}(H_{{{\pi_{{\text{M}}} }}_{,1}} ) = - \lambda + {{2\gamma p_{e} } \mathord{\left/ {\vphantom {{2\gamma p_{e} } {\left( {2 - \beta u} \right)}}} \right. \kern-0pt} {\left( {2 - \beta u} \right)}}\), and the primary sub formula of second order sequence \({\text{Det}}(H_{{\pi_{{\text{M}}} ,2}} ) = {{2\beta } \mathord{\left/ {\vphantom {{2\beta } {\left( {2 - \beta u} \right)}}} \right. \kern-0pt} {\left( {2 - \beta u} \right)}}\left( {\lambda - {{2\gamma p_{e} } \mathord{\left/ {\vphantom {{2\gamma p_{e} } {\left( {2 - \beta u} \right)}}} \right. \kern-0pt} {\left( {2 - \beta u} \right)}}} \right) - {{\left( {\gamma - p_{e} \beta } \right)^{2} } \mathord{\left/ {\vphantom {{\left( {\gamma - p_{e} \beta } \right)^{2} } {\left( {2 - \beta u} \right)^{2} }}} \right. \kern-0pt} {\left( {2 - \beta u} \right)^{2} }}\). When \({{\lambda \geqslant \left( {\gamma - p_{e} \beta } \right)^{2} } \mathord{\left/ {\vphantom {{\lambda \geqslant \left( {\gamma - p_{e} \beta } \right)^{2} } {2\beta \left( {2 - \beta u} \right)}}} \right. \kern-0pt} {2\beta \left( {2 - \beta u} \right)}}{ + }{{2\gamma p_{e} } \mathord{\left/ {\vphantom {{2\gamma p_{e} } {\left( {2 - \beta u} \right)}}} \right. \kern-0pt} {\left( {2 - \beta u} \right)}} = {{\left( {\gamma { + }p_{e} \beta } \right)^{2} } \mathord{\left/ {\vphantom {{\left( {\gamma { + }p_{e} \beta } \right)^{2} } {2\beta \left( {2 - \beta u} \right)}}} \right. \kern-0pt} {2\beta \left( {2 - \beta u} \right)}}\) and \(u \leqslant \min \left\{ {1,\;{2 \mathord{\left/ {\vphantom {2 {\beta ,\;{2 \mathord{\left/ {\vphantom {2 \beta }} \right. \kern-0pt} \beta } - {{\eta_{1}^{2} } \mathord{\left/ {\vphantom {{\eta_{1}^{2} } {4\beta \lambda }}} \right. \kern-0pt} {4\beta \lambda }}}}} \right. \kern-0pt} {\beta ,\;{2 \mathord{\left/ {\vphantom {2 \beta }} \right. \kern-0pt} \beta } - {{\eta_{1}^{2} } \mathord{\left/ {\vphantom {{\eta_{1}^{2} } {4\beta \lambda }}} \right. \kern-0pt} {4\beta \lambda }}}}} \right\}\), \({\text{Det}}(H_{{\pi_{{\text{M}}} ,2}} ) \geqslant 0\)  and \({\text{Det}}(H_{{\pi_{{\text{M}}} ,1}} ) \leqslant 0\). Therefore, \(H_{{\pi_{{\text{M}}} }}\) is negative definite. The first-order conditions are

$$\left\{ \begin{gathered} \frac{{\partial \pi_{{\text{M}}} }}{\partial w} = \frac{{a - w\beta - \gamma \left( {e_{0} - e} \right)}}{2 - \beta u} - \frac{{\left( {w - \left( {e_{0} - e} \right)p_{e} } \right)\beta }}{2 - \beta u} = 0, \hfill \\ \frac{{\partial \pi_{{\text{M}}} }}{\partial e} = \frac{{p_{e} \left( {a - w\beta - \gamma \left( {e_{0} - e} \right)} \right)}}{2 - \beta u} + \frac{{\gamma \left( {w - \left( {e_{0} - e} \right)p_{e} } \right)}}{2 - \beta u} - \lambda e = 0. \hfill \\ \end{gathered} \right.$$

So we have that

$$\begin{aligned} e^{c * } & = \frac{{\left( {\gamma + p_{e} \beta } \right)\left( {a - \left( {\gamma + p_{e} \beta } \right)e_{0} } \right)}}{{2\beta \lambda \left( {2 - \beta u} \right) - \left( {\gamma + p_{e} \beta } \right)^{2} }} = \frac{{\left( {\gamma + p_{e} \beta } \right)\left( {a - \left( {\gamma + p_{e} \beta } \right)e_{0} } \right)}}{{\Delta^{c} }}, \\ w^{c * } & = \frac{{\left( {\left( {2 - \beta u} \right)\lambda - p_{e} (\gamma + p_{c} \beta )} \right)a - \left( {2 - \beta u} \right)\lambda (\gamma - p_{e} \beta )e_{0} }}{{2\beta \lambda \left( {2 - \beta u} \right) - \left( {\gamma + p_{e} \beta } \right)^{2} }} \\ & = \frac{{\left( {\left( {2 - \beta u} \right)\lambda - p_{e} \eta_{1} } \right)a - \left( {2 - \beta u} \right)\lambda \eta_{2} e_{0} }}{{\Delta^{c} }}, \\ \end{aligned}$$
$$\begin{gathered} p^{c * } = \frac{{\left( {1 - \beta u} \right)a}}{{\beta \left( {2 - \beta u} \right)}} + \frac{{w^{c * } }}{2 - \beta u} - \frac{{\gamma \left( {1 - \beta u} \right)\left( {e_{0} - e^{c * } } \right)}}{{\beta \left( {2 - \beta u} \right)}} \hfill \\ \quad = \frac{{\left( {\left( {3 - 2\beta u} \right)\lambda - \eta_{1} p_{e} } \right)a - \lambda \left( {\left( {2 - \beta u} \right)\eta_{1} { + }\left( {1 - \beta u} \right)\eta_{2} } \right)e_{0} }}{{\Delta^{c} }},\quad \hfill \\ \end{gathered}$$

where \(\Delta^{c} = 2\beta \lambda \left( {2 - \beta u} \right) - \left( {\gamma + p_{e} \beta } \right)^{2}\).

Proof of Proposition 4

Compared Theorem 1 and 3, it is seen that \(e^{c*} \geqslant\)\(e^{*}\), \(w^{c*} \geqslant\)\(w^{*}\) and \(p^{c*} \geqslant\)\(p^{*}\). With retailer’s CSR, the market demand is

$$D^{c * } = a - \beta p^{c * } - \gamma \left( {e_{0} - e^{c * } } \right)\, = \frac{{a\Delta^{c} - \eta_{1} \left( {2\left( {2 - \beta u} \right)\beta \lambda e_{0} - \eta_{1} a} \right)}}{{2\left( {2 - \beta u} \right)\Delta^{c} }}\, = \frac{{\beta \lambda \left( {a - \eta_{1} e_{0} } \right)}}{{\Delta^{c} }},$$

where \(\Delta^{c} = 2\beta \lambda \left( {2 - \beta u} \right) - \left( {\gamma + p_{e} \beta } \right)^{2}\). By Eq. (6), the market demand without retailer’s CSR is \(D^{*} = {{\beta \lambda \left( {a - \eta_{1} e_{0} } \right)} \mathord{\left/ {\vphantom {{\beta \lambda \left( {a - \eta_{1} e_{0} } \right)} \Delta }} \right. \kern-0pt} \Delta },\) where \(\Delta { = 4}\lambda \beta - \left( {\gamma { + }p_{e} \beta } \right)^{2}\). It is gotten that \(\Delta^{c} \leqslant\)\(\Delta\), so \(D^{c*} \geqslant\)\(D^{*}\). With retailer’s CSR, the profit of manufacturer is obtained,

$$\begin{aligned} \pi_{{\text{M}}}^{c*} = &\left( {w^{c * } - \left( {e_{0} - e^{c * } } \right)p_{e} } \right)D^{*} - \frac{{\lambda e^{c *2} }}{2} + Kp_{e} \\ = &\frac{{\lambda \left( {a - \eta_{1} e_{0} } \right)^{2} \left[ {2\left( {2 - \beta u} \right)\beta \lambda - \eta_{1}^{2} } \right]}}{{2\left( {\Delta^{c} } \right)^{2} }} + Kp_{e} = \frac{{\lambda \left( {a - \eta_{1} e_{0} } \right)^{2} }}{{2\Delta^{c} }} + Kp_{e} .\end{aligned}$$

Without Retailer’s CSR, by Eqs. (A4) and (A5), the profit of manufacturer is

$$\pi_{{\text{M}}}^{*} = \frac{{\lambda \left( {a - \eta_{1} e_{0} } \right)^{2} }}{2\Delta } + Kp_{e} .$$

It is not hard to get that \(\pi_{{\text{M}}}^{c*} \geqslant\)\(\pi_{{\text{M}}}^{*}\) when \(u \leqslant \min \left\{ {1,\;{2 \mathord{\left/ {\vphantom {2 {\beta ,\;{2 \mathord{\left/ {\vphantom {2 \beta }} \right. \kern-0pt} \beta } - {{\eta_{1}^{2} } \mathord{\left/ {\vphantom {{\eta_{1}^{2} } {4\beta^{{2}} \lambda }}} \right. \kern-0pt} {4\beta^{{2}} \lambda }}}}} \right. \kern-0pt} {\beta ,\;{2 \mathord{\left/ {\vphantom {2 \beta }} \right. \kern-0pt} \beta } - {{\eta_{1}^{2} } \mathord{\left/ {\vphantom {{\eta_{1}^{2} } {4\beta^{{2}} \lambda }}} \right. \kern-0pt} {4\beta^{{2}} \lambda }}}}} \right\}\).

Proof of Theorem 4

When a cooperation is structured in the SC, the retailer and manufacturer set the carbon emission level and retail price to maximize the utility of SC, then

$$\begin{aligned} \mathop {{\text{max}}}\limits_{e,p} \;v_{{\text{S}}} = &\left( {p - \left( {e_{0} - e} \right)p_{e} } \right)\left( {a - \beta p - \gamma \left( {e_{0} - e} \right)} \right) \\ &+ {{u\left( {a - \beta p - \gamma \left( {e_{0} - e} \right)} \right)^{2} } \mathord{\left/ {\vphantom {{u\left( {a - \beta p - \gamma \left( {e_{0} - e} \right)} \right)^{2} } 2}} \right. \kern-0pt} 2} - {{\lambda e^{2} } \mathord{\left/ {\vphantom {{\lambda e^{2} } 2}} \right. \kern-0pt} 2} + Kp_{e} .\end{aligned}$$
(B3)

Let the Hessian matrix of profit function be denoted by \(H_{{v_{{\text{s}}} }}\). Primary sub formula of first order sequence \({\text{Det}}(H_{{v_{{\text{S}}} ,1}} ) = - \lambda { + 2}\gamma p_{e} { + }\gamma u\), and the primary sub formula of second order sequence is

\({\text{Det}}(H_{{\pi_{{\text{M}}} ,2}} ) = \frac{2\beta }{{2 - \beta u}}\left( {\lambda - \frac{{2\gamma p_{e} { + }\gamma u}}{2 - \beta u}} \right) - \frac{{\left( {\gamma - p_{e} \beta - \beta u\gamma } \right)^{2} }}{{\left( {2 - \beta u} \right)^{2} }}\).

Because \(u \leqslant \min \left\{ {1,\;{2 \mathord{\left/ {\vphantom {2 {\beta ,\;{2 \mathord{\left/ {\vphantom {2 \beta }} \right. \kern-0pt} \beta } - {{\eta_{1}^{2} } \mathord{\left/ {\vphantom {{\eta_{1}^{2} } {4\beta \lambda }}} \right. \kern-0pt} {4\beta \lambda }}}}} \right. \kern-0pt} {\beta ,\;{2 \mathord{\left/ {\vphantom {2 \beta }} \right. \kern-0pt} \beta } - {{\eta_{1}^{2} } \mathord{\left/ {\vphantom {{\eta_{1}^{2} } {4\beta \lambda }}} \right. \kern-0pt} {4\beta \lambda }}}}} \right\}\), it is gotten that \({{\lambda \geqslant \left( {\gamma + p_{e} \beta } \right)^{2} } \mathord{\left/ {\vphantom {{\lambda \geqslant \left( {\gamma + p_{e} \beta } \right)^{2} } {2\beta \left( {2 - \beta u} \right)}}} \right. \kern-0pt} {2\beta \left( {2 - \beta u} \right)}}\) and \(u \leqslant \min \left\{ {1,\;{2 \mathord{\left/ {\vphantom {2 \beta }} \right. \kern-0pt} \beta }} \right\}\). Thus, we get \({\text{Det}}(H_{{v_{{\text{S}}} ,2}} ) \geqslant 0\) and \({\text{Det}}(H_{{v_{S} ,1}} ) \leqslant 0\). Therefore, \(H_{{v_{{\text{S}}} }}\) is negative definite. The first-order conditions are

$$\left\{ \begin{gathered} \frac{{\partial \pi_{{\text{S}}} }}{\partial p} = \left( {1 - \beta u} \right)a - \beta \left( {2 - \beta u} \right)p - \left( {\left( {1 - \beta u} \right)\gamma - \beta p_{e} } \right)\left( {e_{0} - e} \right) = 0, \hfill \\ \frac{{\partial \pi_{{\text{S}}} }}{\partial e} = \left( {p_{e} + \gamma u} \right)a + \left( {\gamma - \beta \left( {p_{e} + \gamma u} \right)} \right)p - \gamma \left( {2p_{e} + \gamma u} \right)\left( {e_{0} - e} \right) - \lambda e = 0. \hfill \\ \end{gathered} \right.$$

So we have that

$$\begin{aligned} e^{c**} & = \frac{{\left( {\beta \left( {p_{e} + \gamma u} \right) + \left( {1 - \beta u} \right)\gamma } \right)\left( {a - \left( {\gamma { + }p_{e} \beta } \right)e_{0} } \right)}}{{\lambda \beta \left( {2 - \beta u} \right) - \left( {\beta \left( {p_{e} + \gamma u} \right) + \left( {1 - \beta u} \right)\gamma } \right)\left( {\gamma { + }p_{e} \beta } \right)}}\\ & = \frac{{\eta_{1} \left( {a - \eta_{1} e_{0} } \right)}}{{\lambda \beta \left( {2 - \beta u} \right) - \eta_{1}^{2} }} = \frac{{\eta_{1} \left( {a - \eta_{1} e_{0} } \right)}}{{\Delta^{c} - \lambda \beta \left( {2 - \beta u} \right)}}, \\ p^{c**} & = \frac{{\left( {1 - \beta u} \right)a - \left( {\left( {1 - \beta u} \right)\gamma - p_{e} \beta } \right)\left( {e_{0} - e} \right)}}{{\beta \left( {2 - \beta u} \right)}}\\ & = \frac{{\left( {\lambda \left( {2 - \beta u} \right) - \eta_{1} \left( {u\gamma + 2p_{e} } \right)} \right)a - \left( {\left( {1 - \beta u} \right)\gamma - p_{e} \beta } \right)\lambda \left( {2 - \beta u} \right)e_{0} }}{{\left( {2 - \beta u} \right)\left( {\Delta^{c} - \lambda \beta \left( {2 - \beta u} \right)} \right)}}{,} \\ \end{aligned}$$

where \(\eta_{1} = \gamma { + }p_{e} \beta\) and \(\eta_{2} = \gamma - p_{e} \beta\).

Proof of Proposition 5

By Eqs. (7) and (17),

$$\begin{aligned} e^{{**}} = &\frac{{\eta_{1} \left( {a - \eta_{1} e_{0} } \right)}}{\Delta - 2\lambda \beta } = \frac{{\eta_{1} \left( {a - \eta_{1} e_{0} } \right)}}{{2\lambda \beta - \left( {\gamma { + }p_{e} \beta } \right)^{2} }},\\ e^{c**} = & \frac{{\eta_{1} \left( {a - \eta_{1} e_{0} } \right)}}{{\Delta^{c} - \lambda \beta \left( {2 - \beta u} \right)}} = \frac{{\eta_{1} \left( {a - \eta_{1} e_{0} } \right)}}{{\beta \lambda \left( {2 - \beta u} \right) - \left( {\gamma + p_{e} \beta } \right)^{2} }}.\end{aligned}$$

It is not hard to get that \(e^{c**} \geqslant\)\(e^{**}\) when \(u \leqslant \min \left\{ {1,\;{2 \mathord{\left/ {\vphantom {2 {\beta ,\;{2 \mathord{\left/ {\vphantom {2 \beta }} \right. \kern-0pt} \beta } - {{\eta_{1}^{2} } \mathord{\left/ {\vphantom {{\eta_{1}^{2} } {4\beta \lambda }}} \right. \kern-0pt} {4\beta \lambda }}}}} \right. \kern-0pt} {\beta ,\;{2 \mathord{\left/ {\vphantom {2 \beta }} \right. \kern-0pt} \beta } - {{\eta_{1}^{2} } \mathord{\left/ {\vphantom {{\eta_{1}^{2} } {4\beta \lambda }}} \right. \kern-0pt} {4\beta \lambda }}}}} \right\}\). Also, by Eqs. (3) and (17), we have that

$$\begin{aligned} e^{ * } =& \frac{{\eta_{1} \left( {a - \eta_{1} e_{0} } \right)}}{{{4}\lambda \beta - \left( {\gamma { + }p_{e} \beta } \right)^{2} }},\\ e^{c * } =& \frac{{\left( {\gamma + p_{e} \beta } \right)\left( {a - \left( {\gamma + p_{e} \beta } \right)e_{0} } \right)}}{{\Delta^{c} }} = \frac{{\eta_{1} \left( {a - \eta_{1} e_{0} } \right)}}{{2\beta \lambda \left( {2 - \beta u} \right) - \left( {\gamma + p_{e} \beta } \right)^{2} }}.\end{aligned}$$

Therefore, it is obtained that \(e^{**} \geqslant\)\(e^{c*} \geqslant\)\(e^{*}\) because that \(2 - \beta u \geqslant\) 1. Similarly, it is proved that \(D^{c**} \geqslant\)\(D^{**} \geqslant\)\(D^{c*} \geqslant\)\(D^{*}\).

Proof of Proposition 6

By Proposition 4, it is not hard to have that \(\pi_{{\text{S}}}^{{**}} \geqslant\)\(\pi_{{\text{S}}}^{*}\), since \(\pi_{{\text{R}}}^{c*} \geqslant\)\(\pi_{{\text{R}}}^{*}\) and \(\pi_{{\text{M}}}^{c*} \geqslant\)\(\pi_{{\text{M}}}^{*}\). Meanwhile, considering the CSR, the total profit of SC in the decentralized decision making situation is

$$\begin{aligned} \pi_{{\text{S}}}^{c*} & = \pi_{{\text{M}}}^{c*} + \pi_{{\text{R}}}^{c*} = \frac{{\left( {1 - \beta u} \right)\beta \lambda^{2} \left( {a - e_{0} \left( {\gamma + p_{e} \beta } \right)} \right)^{2} }}{{\left( {\Delta^{c} } \right)^{2} }}\\ &\quad + \frac{{\lambda \left( {a - \eta_{1} e_{0} } \right)^{2} \left[ {2\left( {2 - \beta u} \right)\beta \lambda - \eta_{1}^{2} } \right]}}{{2\left( {\Delta^{c} } \right)^{2} }} + Kp_{e} \\ & = \frac{{\lambda \left( {2\beta \left( {1 - \beta u} \right)\lambda { + }\Delta^{c} } \right)\left( {a - e_{0} \eta_{1} } \right)^{2} }}{{2\left( {\Delta^{c} } \right)^{2} }} + Kp_{e} . \\ \end{aligned}$$

Thus, we have that

$$\begin{aligned} \pi_{S}^{c**} - \pi_{S}^{c*} & = \frac{{\lambda \left( {a - e_{0} \eta_{1} } \right)^{2} }}{2}\left( {\frac{{\left( {\Delta^{c} - 2\beta \lambda } \right)}}{{\left( {\Delta^{c} - \left( {2 - \beta u} \right)\beta \lambda } \right)^{2} }} - \frac{{2\beta \left( {1 - \beta u} \right)\lambda + \Delta^{c} }}{{\left( {\Delta^{c} } \right)^{2} }}} \right) \\ & = \frac{{\lambda \left( {a - e_{0} \eta_{1} } \right)^{2} }}{2}\\ &\quad\left( {\frac{1}{{\Delta^{c} - \left( {2 - \beta u} \right)\beta \lambda }} - \frac{{\beta^{2} u\lambda }}{{\left( {\Delta^{c} - \left( {2 - \beta u} \right)\beta \lambda } \right)^{2} }} - \frac{{2\beta \left( {1 - \beta u} \right)\lambda + \Delta^{c} }}{{\left( {\Delta^{c} } \right)^{2} }}} \right) \\ & = \frac{{\lambda^{2} \beta^{2} \left( {a - e_{0} \eta_{1} } \right)^{2} }}{2}\\ &\quad\left( {\frac{u}{{\left( {\Delta - \left( {2 - \beta u} \right)\beta \lambda } \right)\Delta^{c} }} - \frac{u}{{\left( {\Delta^{c} - \left( {2 - \beta u} \right)\beta \lambda } \right)^{2} }} + \frac{{2\left( {2 - \beta u} \right)\left( {1 - \beta u} \right)}}{{\left( {\Delta^{c} - \left( {2 - \beta u} \right)\beta \lambda } \right)\Delta^{c} }}} \right) \\ & = \frac{{\lambda^{2} \left( {a - e_{0} \eta_{1} } \right)^{2} \beta^{2} }}{{2\left( {\Delta^{c} - \left( {2 - \beta u} \right)\beta \lambda } \right)}}\\ &\quad\left( {\frac{u}{{\Delta^{c} }} - \frac{u}{{\Delta^{c} - \left( {2 - \beta u} \right)\beta \lambda }} + \frac{{2\left( {2 - \beta u} \right)\left( {1 - \beta u} \right)}}{{\Delta^{c} }}} \right) \\ & = \frac{{\lambda^{2} \left( {2 - \beta u} \right)\left( {2 - 3\beta u} \right)\left( {a - e_{0} \eta_{1} } \right)^{2} \beta^{2} }}{{2\left( {\Delta^{c} - \left( {2 - \beta u} \right)\beta \lambda } \right)^{2} }}. \\ \end{aligned}$$

As

$$\pi_{{\text{S}}}^{{c{**}}} - \pi_{{\text{S}}}^{c*} = \frac{{\lambda^{2} \left( {2 - \beta u} \right)\left( {2 - 3\beta u} \right)\left( {a - e_{0} \eta_{1} } \right)^{2} \beta^{2} }}{{2\left( {\Delta^{c} - \left( {2 - \beta u} \right)\beta \lambda } \right)^{2} }} \geqslant 0,$$

it is gotten the conclusion that \(\pi_{{\text{S}}}^{{c{**}}} \geqslant\)\(\pi_{{\text{S}}}^{c*}\).

Proof of Theorem 5

At the second stage, the retailer sets the retrial price to maximize its utility function, then

$$\mathop {{\text{max}}}\limits_{p} \;v_{{\text{R}}} = \left( {p - w} \right)\left( {a - \beta p - \gamma \left( {e_{0} - e} \right)} \right) + u\left( {a - \beta p - \gamma \left( {e_{0} - e} \right)} \right)^{2} /2.$$
(B4)

By Eq. (B4), \(\frac{{\partial v_{{\text{R}}} }}{\partial p} = \left( {1 - \beta u} \right)a - \left( {1 - \beta u} \right)\gamma \left( {e_{0} - e} \right) + \beta w - \beta \left( {2 - \beta u} \right)p\), let it be equal zero, the solution is

$$p^{s * } = {{\left( {1 - \beta u} \right)a} \mathord{\left/ {\vphantom {{\left( {1 - \beta u} \right)a} {\beta \left( {2 - \beta u} \right)}}} \right. \kern-0pt} {\beta \left( {2 - \beta u} \right)}} + {w \mathord{\left/ {\vphantom {w {\left( {2 - \beta u} \right)}}} \right. \kern-0pt} {\left( {2 - \beta u} \right)}} - {{\left( {1 - \beta u} \right)\gamma \left( {e_{0} - e} \right)} \mathord{\left/ {\vphantom {{\left( {1 - \beta u} \right)\gamma \left( {e_{0} - e} \right)} {\beta \left( {2 - \beta u} \right)}}} \right. \kern-0pt} {\beta \left( {2 - \beta u} \right)}},$$

while \(\frac{{\partial^{2} v_{{\text{R}}} }}{{\partial p^{2} }} = - 2\beta { + }u\beta < 0\). At the first stage, the manufacturer sets carbon emission and the wholesale price for their products to maximize its utility function, then

$$\mathop {{\text{max}}}\limits_{e,w} \;\pi_{{\text{M}}} = \left( {w - \left( {e_{0} - e} \right)p_{e} } \right)\left( {a - \beta p - \gamma \left( {e_{0} - e} \right)} \right) - {{\lambda e^{2} } \mathord{\left/ {\vphantom {{\lambda e^{2} } 2}} \right. \kern-0pt} 2} + Kp_{e}.$$

Pugging \(p^{s * }\) into M’s profit function \(\pi_{M}\):

$$\;\pi_{{\text{M}}} = {{\left( {w - \left( {e_{0} - e} \right)p_{e} } \right)\left( {a - w\beta - \gamma \left( {e_{0} - e} \right)} \right)} \mathord{\left/ {\vphantom {{\left( {w - \left( {e_{0} - e} \right)p_{e} } \right)\left( {a - w\beta - \gamma \left( {e_{0} - e} \right)} \right)} {\left( {2 - \beta u} \right)}}} \right. \kern-0pt} {\left( {2 - \beta u} \right)}} - {{\left( {\lambda - \theta } \right)e^{2} } \mathord{\left/ {\vphantom {{\left( {\lambda - \theta } \right)e^{2} } 2}} \right. \kern-0pt} 2} + Kp_{e} .$$
(B5)

Let the Hessian matrix of profit function be denoted by \(H_{{\pi_{{\text{M}}} }}\). Primary sub formula of first order sequence \({\text{Det}}(H_{{{\pi_{{\text{M}}} }}_{,1}} ) = - \left( {\lambda - \theta } \right) + {{2\gamma p_{e} } \mathord{\left/ {\vphantom {{2\gamma p_{e} } {\left( {2 - \beta u} \right)}}} \right. \kern-0pt} {\left( {2 - \beta u} \right)}}\), and the primary sub formula of second order sequence

$${\text{Det}}(H_{{\pi_{{\text{M}}} ,2}} ) = \frac{2\beta }{{2 - \beta u}}\left( {\left( {\lambda - \theta } \right) - \frac{{2\gamma p_{e} }}{2 - \beta u}} \right) - \frac{{\left( {\gamma - p_{e} \beta } \right)^{2} }}{{\left( {2 - \beta u} \right)^{2} }}.$$

When

$$\lambda \geqslant \frac{{\left( {\gamma - p_{e} \beta } \right)^{2} }}{{2\beta \left( {2 - \beta u} \right)}} + \frac{{2\gamma p_{e} }}{2 - \beta u} + \theta = \frac{{\left( {\gamma + p_{e} \beta } \right)^{2} }}{{2\beta \left( {2 - \beta u} \right)}} + \theta ,$$

\({\text{Det}}(H_{{\pi_{{\text{M}}} ,2}} ) \geqslant 0\) and \({\text{Det}}(H_{{\pi_{{\text{M}}} ,1}} ) \leqslant 0\). Therefore, \(H_{{\pi_{{\text{M}}} }}\) is negative definite. The first-order conditions are

$$\left\{ \begin{gathered} \frac{{\partial \pi_{{\text{M}}} }}{\partial w} = \frac{{a - w\beta - \gamma \left( {e_{0} - e} \right)}}{2 - \beta u} - \frac{{\left( {w - \left( {e_{0} - e} \right)p_{e} } \right)\beta }}{2 - \beta u} = 0, \hfill \\ \frac{{\partial \pi_{{\text{M}}} }}{\partial e} = \frac{{p_{e} \left( {a - w\beta - \gamma \left( {e_{0} - e} \right)} \right)}}{2 - \beta u} + \frac{{\gamma \left( {w - \left( {e_{0} - e} \right)p_{e} } \right)}}{2 - \beta u} - \left( {\lambda - \theta } \right)e = 0. \hfill \\ \end{gathered} \right.$$

So

$$\begin{aligned} e^{s * } & = \frac{{\left( {\gamma + p_{e} \beta } \right)\left( {a - \left( {\gamma + p_{e} \beta } \right)e_{0} } \right)}}{{2\beta \left( {\lambda - \theta } \right)\left( {2 - \beta u} \right) - \left( {\gamma + p_{e} \beta } \right)^{2} }} = \frac{{\left( {\gamma + p_{e} \beta } \right)\left( {a - \left( {\gamma + p_{e} \beta } \right)e_{0} } \right)}}{{\Delta^{s} }}, \\ w^{s * } & = \frac{{\left( {\left( {2 - \beta u} \right)\left( {\lambda - \theta } \right) - p_{e} (\gamma + p_{e} \beta )} \right)a - \left( {2 - \beta u} \right)\left( {\lambda - \theta } \right)(\gamma - p_{e} \beta )e_{0} }}{{2\beta \left( {\lambda - \theta } \right)\left( {2 - \beta u} \right) - \left( {\gamma + p_{e} \beta } \right)^{2} }} \\ & = \frac{{\left( {\left( {2 - \beta u} \right)\left( {\lambda - \theta } \right) - p_{e} \eta_{1} } \right)a - \left( {2 - \beta u} \right)\left( {\lambda - \theta } \right)\eta_{2} e_{0} }}{{\Delta^{s} }}, \\ p^{s * } & = \frac{{\left( {1 - \beta u} \right)a}}{{\beta \left( {2 - \beta u} \right)}} + \frac{{w^{s * } }}{2 - \beta u} - \frac{{\gamma \left( {1 - \beta \mu } \right)\left( {e_{0} - e^{s * } } \right)}}{{\beta \left( {2 - \beta u} \right)}} \\ & = \frac{{\left( {\left( {3 - 2\beta u} \right)\left( {\lambda - \theta } \right) - \eta_{1} p_{e} } \right)a - \left( {\lambda - \theta } \right)\left( {\left( {3 - 2\beta u} \right)\gamma - p_{e} \beta } \right)e_{0} }}{{\Delta^{s} }} \\ & = \frac{{\left( {\left( {3 - 2\beta u} \right)\left( {\lambda - \theta } \right) - \eta_{1} p_{e} } \right)a - \left( {\lambda - \theta } \right)\left( {\left( {2 - \beta u} \right)\eta_{1} { + }\left( {1 - \beta u} \right)\eta_{2} } \right)e_{0} }}{{\Delta^{s} }}.\end{aligned}$$

where \(\Delta^{s} = 2\beta \left( {\lambda - \theta } \right)\left( {2 - \beta u} \right) - \left( {\gamma + p_{e} \beta } \right)^{2}\).

Proof of Lemma 1

As

$$\begin{aligned} \frac{\partial f}{{\partial {\varvec{x}}}} & = - \frac{{2\beta \left( {2 - \beta u} \right)}}{{x^{2} }} - \frac{{2\left( {\gamma + p_{e} \beta } \right)^{2} }}{{x^{3} }} ,\\ \frac{{\partial^{2} f}}{{\partial x^{2} }} & = \frac{{4\beta \left( {2 - \beta u} \right)}}{{x^{3} }} + \frac{{8\left( {\gamma + p_{e} \beta } \right)^{2} }}{{x^{4} }} \geqslant 0, \\ \end{aligned}$$

it is gotten that \(f{(}x{)}\) is concave function. Hence, we do not repeat it here.

Proof of Theorem 6

With the subsidy, the market demand in the decentralized making decision situation \(D^{s * }\) is

$$\begin{aligned} D^{s * } & = a - \beta p^{s*} - \gamma \left( {e_{0} - e^{s*} } \right) \\ & = a - \beta \left( {\frac{1 - \beta u}{{\beta \left( {2 - \beta u} \right)}}a + \frac{{w^{s * } }}{2 - \beta u} - \frac{{\left( {1 - \beta u} \right)\gamma \left( {e_{0} - e^{s*} } \right)}}{{\beta \left( {2 - \beta u} \right)}}} \right) - \gamma \left( {e_{0} - e^{s*} } \right) \\ & = \frac{a}{2 - \beta u} - \frac{{\beta w^{s * } }}{2 - \beta u} - \frac{{\gamma \left( {e_{0} - e^{s*} } \right)}}{2 - \beta u} = \frac{{a - \eta_{1} \left( {e_{0} - e^{s*} } \right)}}{{2\left( {2 - \beta u} \right)}} \\ & = \frac{{\Delta^{s} - \eta_{1} \left( {2\left( {2 - \beta u} \right)\beta \left( {\lambda - \theta } \right)e_{0} - \eta_{1} a} \right)}}{{2\left( {2 - \beta u} \right)\Delta^{s} }} \\ & = \frac{{\beta \left( {\lambda - \theta } \right)\left( {a - \eta_{1} e_{0} } \right)}}{{\Delta^{s} }}. \\ \end{aligned}$$

Thus, the profits and manufacturer and retailer are

$$\begin{aligned} \pi_{R}^{s * } & = \left( {p^{s* } - w^{s* } } \right)D^{s* } \\ & = \left( {\frac{a}{\beta } - w^{s* } - \frac{{\gamma \left( {e_{0} - e^{s* } } \right)}}{\beta }} \right)D^{{c}^{ * }} = \frac{{\left( {1 - \beta u} \right)\left( {D^{s * } } \right)^{2} }}{\beta } \\ & = \frac{{\left( {1 - \beta u} \right)\beta \left( {\lambda - \theta } \right)^{2} \left( {a - \eta_{1} e_{0} } \right)^{2} }}{{\Delta^{s} }} \\ & = \frac{{\left( {1 - \beta u} \right)\beta \left( {a - \eta_{1} e_{0} } \right)^{2} }}{{\frac{{2\beta \left( {2 - \beta u} \right)}}{\lambda - \theta } - \frac{{\left( {\gamma + p_{e} \beta } \right)^{2} }}{{\left( {\lambda - \theta } \right)^{2} }}}}. \\ \end{aligned}$$
$$\begin{aligned} \pi_{M}^{s*} & = \left( {w^{s * } - \left( {e_{0} - e^{s * } } \right)p_{c} } \right)D^{s*} - \frac{{\lambda e^{s * 2} }}{2} + Kp_{e} \\ & = \frac{{\left( {2 - \beta u} \right)\beta \lambda \left( {a - \eta_{1} e_{0} } \right)^{2} }}{{\left( {\Delta^{s} } \right)^{2} }} - \frac{{\lambda \eta_{1}^{2} \left( {a - \eta_{1} e_{0} } \right)^{2} }}{{2\left( {\Delta^{s} } \right)^{2} }} + Kp_{e} \\ & = \frac{{\left( {\lambda - \theta } \right)\left( {a - \eta_{1} e_{0} } \right)^{2} \left[ {2\left( {2 - \beta u} \right)\beta \left( {\lambda - \theta } \right) - \eta_{1}^{2} } \right]}}{{2\left( {\Delta^{s} } \right)^{2} }} + Kp_{e} \\ & = \frac{{\left( {\lambda - \theta } \right)\left( {a - \eta_{1} e_{0} } \right)^{2} }}{{2\Delta^{s} }} + Kp_{e} . \\ \end{aligned}$$

By Lemma 1, if \(\theta = \lambda - {{\left( {\gamma + p_{e} \beta } \right)^{2} } \mathord{\left/ {\vphantom {{\left( {\gamma + p_{e} \beta } \right)^{2} } {\beta \left( {2 - \beta u} \right)}}} \right. \kern-0pt} {\beta \left( {2 - \beta u} \right)}}\), then \(\pi_{{\text{R}}}^{s * }\) gets its minimum value, and

$$\frac{{\partial \pi_{{\text{M}}}^{s * } }}{\partial \lambda } = \frac{{\left( {a - \eta_{1} e_{0} } \right)^{2} \left[ {2\beta (2 - \beta u)\left( {\lambda - \theta } \right)) + \left( {\gamma + p_{e} \beta } \right)^{2} } \right]}}{{\left( {\Delta^{s} } \right)^{2} }} \geqslant 0.$$

Therefore, the conclusion is gotten.

Proof of Theorem 7

When a cooperation is structured in the SC, retailer and manufacturer set the carbon emission level and retail price to maximize the utility of SC, and

$$\pi_{{\text{S}}} = \pi_{{\text{M}}} + \pi_{{\text{R}}} = \left( {p - \left( {e_{0} - e} \right)p_{e} } \right)\left( {a - \beta p - \gamma \left( {e_{0} - e} \right)} \right) - {{\left( {\lambda - \theta } \right)e^{2} } \mathord{\left/ {\vphantom {{\left( {\lambda - \theta } \right)e^{2} } 2}} \right. \kern-0pt} 2} + Kp_{e} ,$$
(B6)
$$\begin{aligned}\mathop {{\text{max}}}\limits_{e,p} v_{{\text{S}}} &= \pi_{{\text{S}}} + \mu CS = \left( {p - \left( {e_{0} - e} \right)p_{e} } \right)\left( {a - \beta p - \gamma \left( {e_{0} - e} \right)} \right)\\ &\quad + {{u\left( {a - \beta p - \gamma \left( {e_{0} - e} \right)} \right)^{2} } \mathord{\left/ {\vphantom {{u\left( {a - \beta p - \gamma \left( {e_{0} - e} \right)} \right)^{2} } 2}} \right. \kern-0pt} 2} - {{\left( {\lambda - \theta } \right)e^{2} } \mathord{\left/ {\vphantom {{\left( {\lambda - \theta } \right)e^{2} } 2}} \right. \kern-0pt} 2} + Kp_{e} . \end{aligned}$$
(B7)

Let the Hessian matrix of profit function be denoted by \(H_{{v_{s} }}\). Primary sub formula of first order sequence \({\text{Det}}(H_{{v_{{\text{S}}} ,1}} ) = - \left( {\lambda - \theta } \right){ + 2}\gamma p_{e} { + }\gamma u\), and the primary sub formula of second order sequence \({\text{Det}}(H_{{v_{{\text{S}}} ,2}} ) = 2\beta \left( {\lambda - \theta } \right) - \left( {\gamma + p_{e} \beta } \right)^{2}\). When \(\theta \leqslant \lambda - {{\left( {\gamma - p_{e} \beta + \gamma u} \right)^{2} } \mathord{\left/ {\vphantom {{\left( {\gamma - p_{e} \beta + \gamma u} \right)^{2} } {\beta \left( {2 - \beta u} \right)}}} \right. \kern-0pt} {\beta \left( {2 - \beta u} \right)}} - \gamma \left( {u + 2p_{e} } \right)\) and \(u \leqslant \min \left\{ {1,\;{2 \mathord{\left/ {\vphantom {2 \beta }} \right. \kern-0pt} \beta }} \right\}\), we get that \({\text{Det}}(H_{{v_{{\text{S}}} ,2}} ) \geqslant\) 0 and \({\text{Det}}(H_{{v_{{\text{S}}} ,1}} ) \leqslant 0\). Therefore, \(H_{{v_{{\text{S}}} }}\) is negative definite. The first-order conditions are

$$\left\{ \begin{gathered} \frac{{\partial \pi_{{\text{S}}} }}{\partial p} = \left( {1 - \beta u} \right)a - \beta \left( {2 - \beta u} \right)p - \left( {\left( {1 - \beta u} \right)\gamma - \beta p_{e} } \right)\left( {e_{0} - e} \right) = 0, \hfill \\ \frac{{\partial \pi_{{\text{S}}} }}{\partial e} = \left( {p_{e} + \gamma u} \right)a + \left( {\gamma - \beta \left( {p_{e} + \gamma u} \right)} \right)p - \gamma \left( {2p_{e} + \gamma u} \right)\left( {e_{0} - e} \right) - \left( {\lambda - \theta } \right)e = 0. \hfill \\ \end{gathered} \right.$$

So

$$\begin{aligned} e^{s**} & = \frac{{\left( {\beta \left( {p_{e} + \gamma u} \right) + \left( {1 - \beta u} \right)\gamma } \right)\left( {a - \left( {\gamma + p_{e} \beta } \right)e_{0} } \right)}}{{\left( {\lambda - \theta } \right)\beta \left( {2 - \beta u} \right) - \left( {\beta \left( {p_{e} + \gamma u} \right) + \left( {1 - \beta u} \right)\gamma } \right)\left( {\gamma + p_{e} \beta } \right)}} \\ & = \frac{{\eta_{1} \left( {a - \eta_{1} e_{0} } \right)}}{{\left( {\lambda - \theta } \right)\beta \left( {2 - \beta u} \right) - \eta_{1}^{2} }} = \frac{{\eta_{1} \left( {a - \eta_{1} e_{0} } \right)}}{{\Delta^{s} - \left( {\lambda - \theta } \right)\beta \left( {2 - \beta u} \right)}}, \\ p^{s**} & = \frac{{\left( {1 - \beta u} \right)a - \left( {\left( {1 - \beta u} \right)\gamma - p_{e} \beta } \right)\left( {e_{0} - e^{s**} } \right)}}{{\beta \left( {2 - \beta u} \right)}} \\ & = \frac{{\left( {\left( {\lambda - \theta } \right)\left( {2 - \beta u} \right) - \eta_{1} \left( {u\gamma + 2p_{e} } \right)} \right)a - \left( {\left( {1 - \beta u} \right)\gamma - p_{e} \beta } \right)\left( {\lambda - \theta } \right)\left( {2 - \beta u} \right)e_{0} }}{{\left( {2 - \beta u} \right)\left( {\Delta^{s} - \left( {\lambda - \theta } \right)\beta \left( {2 - \beta u} \right)} \right)}}, \\ \end{aligned}$$

where \(\eta_{1} = \gamma { + }p_{e} \beta\) and \(\eta_{2} = \gamma - p_{e} \beta\).

Proof of Proposition 7

  1. (1)

    As the coefficient a is big enough, we have that

    $$\begin{aligned} \frac{{\partial e^{*} }}{\partial \gamma } & = \frac{{a\eta_{1}^{2} + 2\beta (a - 2e_{0} \eta_{1} ) \cdot 2\lambda }}{{\Delta^{2} }} \geqslant 0,\;\;\;\frac{{\partial e^{*} }}{{\partial p_{e} }} = \frac{{a\eta_{1}^{2} + 2\beta (a - 2e_{0} \eta_{1} ) \cdot 2\lambda }}{{\Delta^{2} }}\beta \geqslant 0 \\ \frac{{\partial e^{**} }}{\partial \gamma } & = \frac{{a\eta_{1}^{2} + \beta (a - 2e_{0} \eta_{1} ) \cdot 2\lambda }}{{(2\lambda \beta - \eta_{1}^{2} )^{2} }} \geqslant 0,\;\;\;\frac{{\partial e^{**} }}{{\partial p_{e} }} = \frac{{a\eta_{1}^{2} + \beta (a - 2e_{0} \eta_{1} ) \cdot 2\lambda }}{{\Delta^{2} }}\beta \geqslant 0. \\ \end{aligned}$$
  2. (2)

    As \(u \leqslant \min \{ 1,{2 \mathord{\left/ {\vphantom {2 \beta }} \right. \kern-0pt} \beta }\}\), we get that

    $$\begin{aligned} \frac{{\partial e^{c*} }}{\partial \gamma } & = \frac{{a\eta_{1}^{2} + 2\beta (a - 2e_{0} \eta_{1} ) \cdot (2 - \beta u)\lambda }}{{(\Delta^{c} )^{2} }} \geqslant 0,\\ \frac{{\partial e^{c*} }}{{\partial p_{e} }} &= \frac{{a\eta_{1}^{2} + 2\beta (a - 2e_{0} \eta_{1} ) \cdot (2 - \beta u)\lambda }}{{(\Delta^{c} )^{2} }}\beta \geqslant 0, \\ \frac{{\partial e^{c**} }}{\partial \gamma } & = \frac{{a\eta_{1}^{2} + \beta (a - 2e_{0} \eta_{1} ) \cdot (2 - \beta u)\lambda }}{{(\lambda \beta (2 - \beta u) - \eta_{1}^{2} )^{2} }} \geqslant 0,\\ \frac{{\partial e^{c**} }}{{\partial p_{e} }}& = \frac{{a\eta_{1}^{2} + \beta (a - 2e_{0} \eta_{1} ) \cdot (2 - \beta u)\lambda }}{{(\lambda \beta (2 - \beta u) - \eta_{1}^{2} )^{2} }}\beta \geqslant 0. \\ \end{aligned}$$
  3. (3)

    Due to \(u \leqslant \min \{ 1,{2 \mathord{\left/ {\vphantom {2 \beta }} \right. \kern-0pt} \beta }\}\) and \(\theta \leqslant \lambda - {{\eta_{1}^{2} } \mathord{\left/ {\vphantom {{\eta_{1}^{2} } {2\beta \left( {2 - \beta u} \right)}}} \right. \kern-0pt} {2\beta \left( {2 - \beta u} \right)}}\), we obtain that

    $$\begin{aligned} \frac{{\partial e^{s*} }}{\partial \gamma } & = \frac{{a\eta_{1}^{2} + 2\beta (a - 2e_{0} \eta_{1} ) \cdot (2 - \beta u)(\lambda - \theta )}}{{(\Delta^{s} )^{2} }} \geqslant 0, \\ \frac{{\partial e^{s*} }}{{\partial p_{e} }} & = \frac{{a\eta_{1}^{2} + 2\beta (a - 2e_{0} \eta_{1} ) \cdot (2 - \beta u)(\lambda - \theta )}}{{(\Delta^{s} )^{2} }}\beta \geqslant 0, \\ \frac{{\partial e^{s**} }}{\partial \gamma } & = \frac{{a\eta_{1}^{2} + \beta (a - 2e_{0} \eta_{1} ) \cdot (2 - \beta u)(\lambda - \theta )}}{{((\lambda - \theta )\beta (2 - \beta u) - \eta_{1}^{2} )^{2} }} \geqslant 0, \\ \frac{{\partial e^{s**} }}{{\partial p_{e} }} & = \frac{{a\eta_{1}^{2} + \beta (a - 2e_{0} \eta_{1} ) \cdot (2 - \beta u)(\lambda - \theta )}}{{((\lambda - \theta )\beta (2 - \beta u) - \eta_{1}^{2} )^{2} }}\beta \geqslant 0. \\ \end{aligned}$$

Proof of Theorem 8

With the subsidy, the whole profit of SC in the centralized decision-making situation is

$$\begin{aligned} \pi_{S}^{s**} & = \left( {p^{s**} - \left( {e_{0} - e} \right)p_{e} } \right)D^{s**} - \frac{{\left( {\lambda - \theta } \right)\left( {e^{s**} } \right)^{2} }}{2} + Kp_{e}\\ & = \frac{{\left( {1 - \beta u} \right)\left( {a - \eta_{1} \left( {e_{0} - e^{s**} } \right)} \right)}}{{\left( {2 - \beta u} \right)\beta }}D^{**} - \frac{{\left( {\lambda - \theta } \right)\left( {e^{s**} } \right)^{2} }}{2} + Kp_{e} \\ & = \frac{{\left( {1 - \beta u} \right)\left( {D^{s**} } \right)^{2} }}{\beta } - \frac{{\left( {\lambda - \theta } \right)\left( {e^{s**} } \right)^{2} }}{2} + Kp_{e} \\ &= \frac{{\left( {1 - \beta u} \right)\beta \left( {\lambda - \theta } \right)^{2} \left( {a - \eta_{1} e_{0} } \right)^{2} }}{{\left( {\Delta^{s} - \left( {2 - \beta u} \right)\beta \left( {\lambda - \theta } \right)} \right)^{2} }} - \frac{{\left( {\lambda - \theta } \right)\eta_{1}^{2} \left( {a - \eta_{1} e_{0} } \right)^{2} }}{{2\left( {\Delta^{s} - \left( {2 - \beta u} \right)\beta \left( {\lambda - \theta } \right)} \right)^{2} }} + Kp_{e} \\ & = \frac{{\left( {\lambda - \theta } \right)\left( {a - \eta_{1} e_{0} } \right)^{2} \left( {\Delta^{s} - 2\beta \left( {\lambda - \theta } \right)} \right)}}{{2\left( {\Delta^{s} - \left( {2 - \beta u} \right)\beta \left( {\lambda - \theta } \right)} \right)^{2} }} + Kp_{e} . \\ \end{aligned}$$

The utility of SC in the centralized decision-making situation is

$$\begin{aligned} v_{S}^{s**} & = \pi_{S}^{s**} + uCS\; = \frac{{\left( {\lambda - \theta } \right)\left( {a - \eta_{1} e_{0} } \right)^{2} \left( {\Delta^{s} - 2\beta \left( {\lambda - \theta } \right)} \right)}}{{2\left( {\Delta^{s} - \left( {2 - \beta u} \right)\beta \left( {\lambda - \theta } \right)} \right)^{2} }} + Kp_{e} + \frac{{\mu \left( {D^{c**} } \right)^{2} }}{2} \\ & = \frac{{\left( {\lambda - \theta } \right)\left( {a - \eta_{1} e_{0} } \right)^{2} \left( {\Delta^{s} - 2\beta \left( {\lambda - \theta } \right)} \right)}}{{2\left( {\Delta^{s} - \left( {2 - \beta u} \right)\beta \left( {\lambda - \theta } \right)} \right)^{2} }} + Kp_{e} + \frac{{\mu \beta^{2} \left( {\lambda - \theta } \right)^{2} \left( {a - \eta_{1} e_{0} } \right)^{2} }}{{2\left( {\Delta^{s} - \left( {\lambda - \theta } \right)\beta \left( {2 - \beta u} \right)} \right)^{2} }} \\ & = \frac{{\left( {\lambda - \theta } \right)\left( {a - \eta_{1} e_{0} } \right)^{2} }}{{2\left( {\Delta^{s} - \left( {2 - \beta u} \right)\beta \left( {\lambda - \theta } \right)} \right)}} + Kp_{e} . \\ \end{aligned}$$

By Remark 2, there is

$$v_{{\text{S}}}^{c**} = \pi_{{\text{S}}}^{c**} + \mu CS\; = \frac{{\lambda \left( {a - \eta_{1} e_{0} } \right)^{2} }}{{2\left( {\Delta^{c} - \left( {2 - \beta u} \right)\beta \lambda } \right)}} + Kp_{e},$$

so \(v_{{\text{S}}}^{s**} \leqslant v_{{\text{S}}}^{c**}\). The profit of supply in decentralized decision-making situation is

$$\begin{aligned} \pi_{S}^{s*} & = \pi_{M}^{s*} + \pi_{R}^{s*} \\ & = \frac{{\left( {1 - \beta u} \right)\beta \left( {\lambda - \theta } \right)^{2} \left( {a - e_{0} \left( {\gamma + p_{e} \beta } \right)} \right)^{2} }}{{\left( {\Delta^{s} } \right)^{2} }}\\ & \quad + {\kern 1pt} \;\frac{{\lambda \left( {a - \eta_{1} e_{0} } \right)^{2} \left[ {2\left( {2 - \beta u} \right)\beta \left( {\lambda - \theta } \right) - \eta_{1}^{2} } \right]}}{{2\left( {\Delta^{s} } \right)^{2} }} + Kp_{e} \\ & = \frac{{\left( {\lambda - \theta } \right)\left( {2\beta \left( {1 - \beta u} \right)\left( {\lambda - \theta } \right) + \Delta^{s} } \right)\left( {a - e_{0} \eta_{1} } \right)^{2} }}{{2\left( {\Delta^{s} } \right)^{2} }} + Kp_{e} . \\ \end{aligned}$$

Hence, it is obvious that \(\pi_{{\text{S}}}^{s**} \geqslant \pi_{{\text{S}}}^{s*}\). Also, the utility of supply in decentralized decision-making situation is

$$\begin{aligned} v_{S}^{s*} & = \pi_{S}^{s*} + v_{R}^{s*} = \frac{{\left( {\lambda - \theta } \right)\left( {2\beta \left( {1 - \beta u} \right)\left( {\lambda - \theta } \right) + \Delta^{s} } \right)\left( {a - e_{0} \eta_{1} } \right)^{2} }}{{2\left( {\Delta^{s} } \right)^{2} }} + Kp_{e} + \frac{{u\left( {D^{s * } } \right)^{2} }}{2} \\ & = \frac{{\left( {\lambda - \theta } \right)\left( {2\beta \left( {1 - \beta u} \right)\left( {\lambda - \theta } \right) + \Delta^{c} } \right)\left( {a - e_{0} \eta_{1} } \right)^{2} }}{{2\left( {\Delta^{s} } \right)^{2} }} + Kp_{e} + \frac{{u\beta^{2} \left( {\lambda - \theta } \right)^{2} \left( {a - \eta_{1} e_{0} } \right)^{2} }}{{2\left( {\Delta^{s} } \right)^{2} }} \\ & = \frac{{\left( {\lambda - \theta } \right)\left( {\left( {2 - \beta u} \right)\beta \left( {\lambda - \theta } \right) + \Delta^{c} } \right)\left( {a - e_{0} \eta_{1} } \right)^{2} }}{{2\left( {\Delta^{s} } \right)^{2} }} + Kp_{e} . \\ \end{aligned}$$

Thus, we have that

$$\begin{aligned} \pi_{S}^{s**} - \pi_{S}^{s*} & = \frac{{\left( {\lambda - \theta } \right)\left( {a - e_{0} \eta_{1} } \right)^{2} }}{2}\\ &\quad\left( \frac{{\Delta^{s} - 2\beta \left( {\lambda - \theta } \right)}}{{\left( {\Delta^{s} - \left( {2 - \beta u} \right)\beta \left( {\lambda - \theta } \right)} \right)^{2} }}- \frac{{2\beta \left( {1 - \beta u} \right)\left( {\lambda - \theta } \right) + \Delta^{s} }}{{\left( {\Delta^{s} } \right)^{2} }} \right) \\ & = \frac{{\left( {\lambda - \theta } \right)\left( {a - e_{0} \eta_{1} } \right)^{2} }}{2}\\ &\quad\left( \frac{1}{{\Delta^{s} - \left( {2 - \beta u} \right)\beta \left( {\lambda - \theta } \right)}} - \frac{{\beta^{2} u\left( {\lambda - \theta } \right)}}{{\left( {\Delta^{s} - \left( {2 - \beta u} \right)\beta \left( {\lambda - \theta } \right)} \right)^{2} }} \right.\\ &\quad\left.- \frac{{2\beta \left( {1 - \beta u} \right)\left( {\lambda - \theta } \right) + \Delta^{s} }}{{\left( {\Delta^{s} } \right)^{2} }} \right) \\ & = \frac{{\left( {\lambda - \theta } \right)^{2} \beta^{2} \left( {a - e_{0} \eta_{1} } \right)^{2} }}{2}\\ &\quad\left( \frac{u}{{\left( {\Delta^{s} - \left( {2 - \beta u} \right)\beta \left( {\lambda - \theta } \right)} \right)\Delta^{s} }} - \frac{u}{{\left( {\Delta^{s} - \left( {2 - \beta u} \right)\beta \left( {\lambda - \theta } \right)} \right)^{2} }}\right.\\ &\quad\left. + \frac{{2\left( {2 - \beta u} \right)\left( {1 - \beta u} \right)}}{{\left( {\Delta^{s} - \left( {2 - \beta u} \right)\beta \left( {\lambda - \theta } \right)} \right)\Delta^{s} }} \right) \\ & = \frac{{\left( {\lambda - \theta } \right)^{2} \left( {a - e_{0} \eta_{1} } \right)^{2} \beta^{2} }}{{2\left( {\Delta^{s} - \left( {2 - \beta u} \right)\beta \left( {\lambda - \theta } \right)} \right)}}\\ &\quad\left( {\frac{u}{{\Delta^{s} }} - \frac{u}{{\Delta^{s} - \left( {2 - \beta u} \right)\beta \left( {\lambda - \theta } \right)}} + \frac{\begin{gathered} 2\left( {2 - \beta u} \right)\left( {1 - \beta u} \right) \hfill \\ \end{gathered} }{{\Delta^{s} }}} \right) \\ & = \frac{{\left( {\lambda - \theta } \right)^{2} \left( {2 - \beta u} \right)\left( {2 - 3\beta u} \right)\left( {a - e_{0} \eta_{1} } \right)^{2} \beta^{2} }}{{2\left( {\Delta^{s} - \left( {2 - \beta u} \right)\beta \left( {\lambda - \theta } \right)} \right)^{2} }}. \\ \end{aligned}$$

It is gotten that \(\pi_{{\text{S}}}^{s**} - \pi_{{\text{S}}}^{s*} \geqslant\)\(\pi_{{\text{S}}}^{c**} - \pi_{{\text{S}}}^{c*}\). This proof is completed.

Proof of Theorem 9

The proof is similar to Theorem 6. When the subsidy is at a certain point \(\theta = \lambda - {{\left( {\eta_{2} + \gamma u} \right)^{2} } \mathord{\left/ {\vphantom {{\left( {\eta_{2} + \gamma u} \right)^{2} } {\beta \left( {2 - \beta u} \right)}}} \right. \kern-0pt} {\beta \left( {2 - \beta u} \right)}} - \gamma \left( {u + 2p_{e} } \right)\), the profit of the SC is the smallest. Because \(\lambda - {{\left( {\eta_{2} + \gamma u} \right)^{2} } \mathord{\left/ {\vphantom {{\left( {\eta_{2} + \gamma u} \right)^{2} } {\beta \left( {2 - \beta u} \right)}}} \right. \kern-0pt} {\beta \left( {2 - \beta u} \right)}} - \gamma \left( {u + 2p_{e} } \right) \leqslant \lambda - {{\left( {\eta_{2} + \gamma u} \right)^{2} } \mathord{\left/ {\vphantom {{\left( {\eta_{2} + \gamma u} \right)^{2} } {\beta \left( {2 - \beta u} \right)}}} \right. \kern-0pt} {\beta \left( {2 - \beta u} \right)}} - \gamma \left( {u + 2p_{e} } \right)\), so \(\frac{{\partial \pi_{{\text{S}}}^{{s{*}*}} }}{\partial \theta } \leqslant 0\).

Proof of Theorem 10

We have gotten that

$$\begin{aligned} e^{c * } & = \frac{{\left( {\gamma + p_{e} \beta } \right)\left( {a - \left( {\gamma + p_{e} \beta } \right)e_{0} } \right)}}{{\Delta^{c} }},\;\;\;e^{c**} = \frac{{\eta_{1} \left( {a - \eta_{1} e_{0} } \right)}}{{\Delta^{c} - \lambda \beta \left( {2 - \beta u} \right)}}, \\ e^{s * } & = \frac{{\left( {\gamma + p_{e} \beta } \right)\left( {a - \left( {\gamma + p_{e} \beta } \right)e_{0} } \right)}}{{\Delta^{s} }},\;\;\;e^{{s{**}}} = \frac{{\eta_{1} \left( {a - \eta_{1} e_{0} } \right)}}{{\Delta^{s} - \left( {\lambda - \theta } \right)\beta \left( {2 - \beta u} \right)}}. \\ \end{aligned}$$

Because \(\Delta^{s} = 2\beta \left( {\lambda - \theta } \right)\left( {2 - \beta u} \right) - \left( {\gamma + p_{e} \beta } \right)^{2} \leqslant 2\beta \lambda \left( {2 - \beta u} \right) - \left( {\gamma + p_{e} \beta } \right)^{2} = \Delta^{c}\), so we also get that \(e^{s**} \geqslant e^{c**}\) and \(e^{s*} \geqslant e^{c*}\). By Proposition 5, we get that \(D^{c**} \geqslant D^{**} \geqslant D^{c*}\). In a similar way, it is obtained that \(D^{s**} \geqslant D^{s*} \geqslant D^{c*} \geqslant D^{*}\). Hence, we only need to prove that \(D^{c**} \geqslant D^{s*}.\)

$$\begin{aligned} D^{c**} - D^{s * } & = \frac{{\beta \lambda \left( {a - \eta_{1} e_{0} } \right)}}{{\Delta^{c} - \lambda \beta \left( {2 - \beta u} \right)}} - \frac{{\beta \left( {\lambda - \theta } \right)\left( {a - \eta_{1} e_{0} } \right)}}{{\Delta^{s} }} \\ & = \beta \left( {a - \eta_{1} e_{0} } \right)\left( {\frac{1}{{\beta \left( {2 - \beta u} \right) - {{\eta_{1}^{2} } \mathord{\left/ {\vphantom {{\eta_{1}^{2} } \lambda }} \right. \kern-0pt} \lambda }}} - \frac{1}{{2\beta \left( {2 - \beta u} \right) - {{\eta_{1}^{2} } \mathord{\left/ {\vphantom {{\eta_{1}^{2} } {\left( {\lambda - \theta } \right)}}} \right. \kern-0pt} {\left( {\lambda - \theta } \right)}}}}} \right). \\ \end{aligned}$$

Furthermore, we have that

$$\begin{aligned} & \left( {2\beta \left( {2 - \beta u} \right) - {{\eta_{1}^{2} } \mathord{\left/ {\vphantom {{\eta_{1}^{2} } {\left( {\lambda - \theta } \right)}}} \right. \kern-0pt} {\left( {\lambda - \theta } \right)}}} \right) - \left( {\beta \left( {2 - \beta u} \right) - {{\eta_{1}^{2} } \mathord{\left/ {\vphantom {{\eta_{1}^{2} } \lambda }} \right. \kern-0pt} \lambda }} \right)\\ &\quad = \beta \left( {2 - \beta u} \right) - {{\eta_{1}^{2} } \mathord{\left/ {\vphantom {{\eta_{1}^{2} } {\left( {\lambda - \theta } \right)}}} \right. \kern-0pt} {\left( {\lambda - \theta } \right)}} + {{\eta_{1}^{2} } \mathord{\left/ {\vphantom {{\eta_{1}^{2} } \lambda }} \right. \kern-0pt} \lambda } \\ &\quad = \frac{{\beta \left( {2 - \beta u} \right)\left( {\lambda - \theta } \right)\lambda - \eta_{1}^{2} \lambda + \eta_{1}^{2} \left( {\lambda - \theta } \right)}}{{\left( {\lambda - \theta } \right)\lambda }} = \frac{{\beta \left( {2 - \beta u} \right)\left( {\lambda - \theta } \right)\lambda - \eta_{1}^{2} \theta }}{{\left( {\lambda - \theta } \right)\lambda }} \\ &\quad \geqslant \frac{{\left( {{{\eta_{1}^{2} } \mathord{\left/ {\vphantom {{\eta_{1}^{2} } {\beta \left( {2 - \beta u} \right){ + }\theta }}} \right. \kern-0pt} {\beta \left( {2 - \beta u} \right){ + }\theta }}} \right)\eta_{1}^{2} - \eta_{1}^{2} \theta }}{{\left( {\lambda - \theta } \right)\lambda }} \geqslant 0. \\ \end{aligned}$$

Thus, it is gotten that

\(D^{{c{\text{**}}}} - D^{{s * }} = \beta \left( {a - \eta _{1} e_{0} } \right)\left( {\frac{1}{{\beta \left( {2 - \beta u} \right) - \eta _{1} ^{2} /\lambda }} - \frac{1}{{2\beta \left( {2 - \beta u} \right) - \eta _{1} ^{2} /\left( {\lambda - \theta } \right)}}} \right) \geqslant 0.\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Yu, XH. & Zhang, Q. The Effect of Retailer’ Social Responsibility and Government Subsidy on the Performance of Low-Carbon Supply Chain. J. Oper. Res. Soc. China 13, 227–267 (2025). https://doi.org/10.1007/s40305-023-00479-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40305-023-00479-z

Keywords

Mathematics Subject Classification