WANG Hao, SUN Zhongjie, CHEN Dong, WAN Tao, LIANG Zhiyong, LIAN Guoliang, DONG Fang, GONG Shanshan, JI Junyu, QIN Cengchang. Computer-aided Diagnostic Methods for Medial Degeneration in Non-inflammatory Aorta Based on Multi-stained Pathological Images[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(4): 590-596. DOI: 10.12290/xhyxzz.2022-0170
Citation: WANG Hao, SUN Zhongjie, CHEN Dong, WAN Tao, LIANG Zhiyong, LIAN Guoliang, DONG Fang, GONG Shanshan, JI Junyu, QIN Cengchang. Computer-aided Diagnostic Methods for Medial Degeneration in Non-inflammatory Aorta Based on Multi-stained Pathological Images[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(4): 590-596. DOI: 10.12290/xhyxzz.2022-0170

Computer-aided Diagnostic Methods for Medial Degeneration in Non-inflammatory Aorta Based on Multi-stained Pathological Images

Funds: 

National Natural Science Foundation of China 61876197

The Clinical Technical Innovation Project of Beijing Hospitals Authority XMLX201814

More Information
  • Corresponding author:

    CHEN Dong, E-mail: azchendong@163.com

  • Received Date: March 31, 2022
  • Accepted Date: May 26, 2022
  • Issue Publish Date: July 29, 2022
  •   Objective  To explore the feasibility of establishing a computer-aided diagnostic model of multi-stained pathological images in patients with non-inflammatory aortic medial degeneration(MD).
      Methods  In this study, pathological sections of aortic surgical specimens for non-inflammatory lesions from patients with thoracic aortic aneurysms and dissections were retrospectively collected at the Beijing Anzhen Hospital, Capital Medical University from July to December 2018. The lesions were scanned under ×400 magnification as whole slide images(WSI) and then annotated by two pathologists. The annotated WSI images were randomly split into training and test sets in a 6:1 ratio. SE-EmbraceNet was used to train the data to construct a multi-classification model for MD of multi-stained pathology images, including intralamellar mucoid extracellular matrix accumulation (MEMA-I), translamellar mucoid extracellular matrix accumulation (MEMA-T), elastic fiber fragmentation and/or loss(EFFL) and smooth muscle cell nuclei loss (SMCNL). The classification effect of the model was evaluated based on the test set data, and the results were expressed in terms of accuracy, sensitivity, precision, and the F1 value.
      Results  Totally 530 pathological slides of non-inflammatory aortic lesion surgical specimens from patients with aortic aneurysm and dissection were included. Extracted 5265 sets of images, each containing 5 stained pathological images of the same lesion site: HE staining, special staining (elastic fiber/VanGieson, Masson, Alcian blue/periodic acid Schiff) and smooth muscle actin staining. There were 4513 sets of training images, including 987 SMCNL, 2013 EFFL, 1337 MEMA-I, and 176 MEMA-T; and 752 test images including 166 SMCNL, 335 EFFL, 222 MEMA-I, and 29 MEMA-T. The overall performance of the model in the test set showed good results, with an accuracy of 96.54%(726/752). The model had the best classification performance for EFFL, with accuracy, sensitivity, precision, and F1 value all ≥98.51%. The model also had a great classification ability for SMCNL, with all evaluated indexes≥97.59%.
      Conclusion  The multi-stained pathology image-based MD classification model constructed in this study has high classification accuracy and good generalization ability, which has the potential to be applied to assist in the diagnosis of the non-inflammatory aortic lesion.
  • [1]
    Ostberg NP, Zafar MA, Ziganshin BA, et al. The Genetics of Thoracic Aortic Aneurysms and Dissection: A Clinical Perspective[J]. Biomolecules, 2020, 10: 182. DOI: 10.3390/biom10020182
    [2]
    Halushka MK, Angelini A, Bartoloni G, et al. Consensus statement on surgical pathology of the aorta from the Society for Cardiovascular Pathology and the Association for European Cardiovascular Pathology: Ⅱ. Noninflammatory degenerative diseases-nomenclature and diagnostic criteria[J]. Cardiovasc Pathol, 2016, 25: 247-257. DOI: 10.1016/j.carpath.2016.03.002
    [3]
    汪昊, 陈东, 万涛, 等. 深度学习神经网络在非炎性主动脉中膜变性病理图像分类中的应用[J]. 中华病理学杂志, 2021, 50: 620-625. DOI: 10.3760/cma.j.cn112151-20201205-00902

    Wang H, Chen D, Wan T, et al. Application of deep learning neural network in pathological image classification of non-inflammatory aortic membrane degeneration[J]. Zhonghua Binglixue Zazhi, 2021, 50: 620-625. DOI: 10.3760/cma.j.cn112151-20201205-00902
    [4]
    孙中杰, 万涛, 陈东, 等. 深度学习在主动脉中膜变性病理图像分类中的应用[J]. 计算机应用, 2021, 41: 280-285. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY202101045.htm

    Sun ZJ, Wan T, Chen D, et al. Application of deep learning in histopathological image classification of aortic medial degeneration[J]. Jisuanji Yingyong, 2021, 41: 280-285. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY202101045.htm
    [5]
    Li C, Li XT, Rahaman MM, et al. A comprehensive review of computer-aided whole-slide image analysis: from datasets to feature extraction, segmentation, classification and detection approaches[J]. Artif Intell Rev, 2022. https://doi.org/10.1007/s10462-021-10121-0.
    [6]
    Tosta TA, de Faria PR, Neves LA, et al. Color normaliza-tion of faded H&E-stained histological images using spectral matching[J]. Comput Biol Med, 2019, 111: 103344. DOI: 10.1016/j.compbiomed.2019.103344
    [7]
    万涛, 秦曾昌, 孙中杰, 等. 基于深度学习的多种染色病理图像分类方法及系统: CN112348059A[P]. 2021-02-09.
    [8]
    Hu J, Shen L, Albanie S, et al. Squeeze-and-Excitation Networks[J]. IEEE Trans Pattern Anal Mach Intell, 2020, 42: 2011-2023. DOI: 10.1109/TPAMI.2019.2913372
    [9]
    Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting[J]. J Mach Learn Res, 2014, 15: 1929-1958.
    [10]
    张光磊, 范广达, 冯又丹, 等. 一种基于深度学习的胰腺癌病理图像分类方法及系统: CN113538435A[P]. 2021-10-22.
    [11]
    van Rijthoven M, Balkenhol M, Siliŋa K, et al. HookNet: Multi-resolution convolutional neural networks for semantic segmentation in histopathology whole-slide images[J]. Med Image Anal, 2021, 68: 101890. DOI: 10.1016/j.media.2020.101890
    [12]
    Wang X, Fang Y, Yang S, et al. A hybrid network for automatic hepatocellular carcinoma segmentation in H&E-stained whole slide images[J]. Med Image Anal, 2021, 68: 101914. DOI: 10.1016/j.media.2020.101914
    [13]
    Lin H, Chen H, Wang X, et al. Dual-path network with synergistic grouping loss and evidence driven risk stratifica-tion for whole slide cervical image analysis[J]. Med Image Anal, 2021, 69: 101955.
    [14]
    Xue Y, Ye J, Zhou Q, et al. Selective synthetic augmenta-tion with HistoGAN for improved histopathology image classification[J]. Med Image Anal, 2021, 67: 101816.
    [15]
    Mohammadi S, Mohammadi M, Dehlaghi V, et al. Automa-tic Segmentation, Detection, and Diagnosis of Abdominal Aortic Aneurysm (AAA) Using Convolutional Neural Networks and Hough Circles Algorithm[J]. Cardiovasc Eng Technol, 2019, 10: 490-499.
  • Related Articles

    [1]SUN Yuxin, HAN Bingtai, GUO Xiaoyuan, ZHENG Xueqing, CHEN Shi, YANG Hongbo, PAN Hui. Effect of Exercise on Blood Glucose Metabolism of Type 2 Diabetes Patients in East Asian Population: A Meta-Analysis[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(2): 492-505. DOI: 10.12290/xhyxzz.2024-0296
    [2]LI Zhimao, WANG Dandi, ZHANG Ting, MEI Qimin, LIU Yecheng, ZHU Huadong. Comparative Efficacy of Amiodarone and Lidocaine in Patients with Cardiac Arrest: A Systematic Review and Meta-analysis[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(2): 406-415. DOI: 10.12290/xhyxzz.2024-0840
    [3]SUN Yuxin, GUO Xiaoyuan, CHEN Shi, PAN Hui, ZHU Huijuan. Meta-Analysis of the Effect of Resistance Exercise Prescription on Glucose and Lipid Metabolism in Overweight and Obese Adults[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(1): 235-247. DOI: 10.12290/xhyxzz.2024-0225
    [4]CHEN Tianren, DU Zhongying, TANG Lu, CHEN Wenqiang, WANG Chun'ai. Effect of Erector Plane Muscle Block and Thoracic Paravertebral Block on Postoperative Analgesia in Patients with Breast Cancer: A Meta-analysis[J]. Medical Journal of Peking Union Medical College Hospital. DOI: 10.12290/xhyxzz.2024-0351
    [5]WANG Ziyi, LU Cuncun, HUANG Jiayi, ZHANG Jinglei, SHANG Wenru, CUI Lu, LIU Wendi, DENG Xiuxiu, ZHAO Xiaoxiao, YANG Kehu, LI Xiuxia. Investigation and Evaluation of Systematic Reviews of Prediction Models Published in Chinese Journals: Methodological and Reporting Quality[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(4): 927-935. DOI: 10.12290/xhyxzz.2023-0418
    [6]SU Renfeng, YU Xuan, SHI Qianling, LUO Xufei, SUN Yajia, LAN Hui, REN Mengjuan, WU Shouyuan, WANG Ping, WANG Ling, ZHAO Junxian, CHEN Yaolong. Current Situation and Progress of Evidence Synthesis Methodology[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1301-1309. DOI: 10.12290/xhyxzz.2023-0062
    [7]LIU Yunlan, ZHANG Jingyi, SHI Qianling, YANG Nan, WANG Zijun, LUO Xufei, REN Mengjuan, XUN Yangqin, ZHOU Qi, LIU Hui, LYU Meng, CHEN Yaolong. Investigation and Evaluation of Chinese Clinical Practice Guidelines Published in Medical Journals in 2019:Methodological and Reporting Quality[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(2): 324-331. DOI: 10.12290/xhyxzz.2022-0027
    [8]Yi-bing ZHU, Wei LI. How Do Clinicians Understand Meta-analysis[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(3): 314-319. DOI: 10.3969/j.issn.1674-9081.20200073
    [9]Xiao-xia PENG. Methodological Limitations and Applicable Context of Meta-analysis[J]. Medical Journal of Peking Union Medical College Hospital, 2017, 8(6): 381-386. DOI: 10.3969/j.issn.1674-9081.2017.06.012
    [10]Ni XU, Cong-wei LIU, Fang-tian DONG. Dexamethasone Intravitreal Implant Compared with Anti-vascular Endothelial Growth Factor Injection for Macular Edema Secondary to Retinal Vein Occlusion: a Meta-analysis[J]. Medical Journal of Peking Union Medical College Hospital, 2016, 7(3): 168-175. DOI: 10.3969/j.issn.1674-9081.2016.03.002
  • Cited by

    Periodical cited type(9)

    1. 齐素霞,王子月,袁莹,沈青青. 左西孟旦联合培哚普利叔丁胺治疗充血性心力衰竭的效果观察. 成都医学院学报. 2025(01): 66-69 .
    2. 孙晶,孟昌,白莹,郑山海. H2FPEF评分对非射血分数降低型心力衰竭患者预后的预测价值. 中国心血管病研究. 2025(01): 47-51 .
    3. 李杰,王雪梅. 放射性核素显像在射血分数保留的心力衰竭中的研究进展. 中国医学影像学杂志. 2025(02): 215-220 .
    4. 宋夏,朱婷,李湘燕,姚雯. 通脉养心丸联合沙库巴曲缬沙坦钠治疗慢性心力衰竭的临床研究. 现代药物与临床. 2025(03): 664-669 .
    5. 宋金玉,霍红秋,孙丽明,王丽晔,曹靓霞,戴运佳,冯宝静. 创新扩散理论结合多学科协作在重症肺炎合并心力衰竭患者中的应用. 实用临床医药杂志. 2025(06): 34-38+50 .
    6. 张富汉,王守富,于国俊,卢吉锋. 王守富治疗慢性心力衰竭经验. 河南中医. 2025(04): 538-543 .
    7. 刘知音,刘漫霞,卜婕,陈静,周玉. 改良护理方法对经胸右心声学造影患者血流动力学和舒适度的影响. 贵州医药. 2024(12): 1994-1996 .
    8. 游建丹,叶鹭萍,王晓斌. EECP结合运动训练的序贯式康复护理模式对心功能不全患者的干预研究. 心血管病防治知识. 2024(23): 131-133 .
    9. 刘珊珊. 心脏彩超在慢性心力衰竭中的诊断价值分析. 现代诊断与治疗. 2024(24): 3716-3717+3720 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close